73 research outputs found

    Producing a College Graduate Using Retention, Progression, and Graduation (RPG) Initiatives: A University Systems’ Approach

    Get PDF
    ABSTRACT Complete College Georgia (CCG) is an initiative that has the University System of Georgia institutions strategizing ways to develop plans that will increase the number of college graduates by the year 2020. Governor Nathan Deal has indicated that graduation rates need to increase from 42% to 60% within the next 7 years. With the anticipation of approximately 20% more students graduating to meet the 250,000 target, a closer look is needed at how an additional 50,000 graduates can be produced to make this goal a reality. To fulfill this goal, there needs to be an increase of approximately 7,143 graduates each year for the next few years. This means approximately a 3% increase in students graduating each year. Under the paradigm of retention, progression, and graduation (RPG) and CCG, this descriptive research study used a questionnaire to collect data from academic advisors regarding how they plan to approach the mandate in an effort to support Governor Deal’s plan to increase the graduation rate in the state of Georgia. The findings of the study indicate that both faculty and professional academic advisors support that there are two key elements which are strong factors in obtaining RPG. One is when students come to college academically prepared to do college work and the other is having an intrinsic motivation to learn. Collectively, advisors recommend a stronger high school curriculum that will produce scholarly students. Equally divided were results on funding, revealing 50% colleges from the state should be based on enrollment while the other 50% indicate funding should be based on the number of graduates an institution has per term (performance-base). Finally, this study gave academic advisors a voice. The disconnect between policy makers and implementers of the policies is palpable. Academic advisors are valuable and significant in fulfilling the RPG and CCG initiatives

    Immortalized, premalignant epithelial cell populations contain long-lived, label-retaining cells that asymmetrically divide and retain their template DNA

    Get PDF
    Abstract Introduction During selective segregation of DNA, a cell asymmetrically divides and retains its template DNA. Asymmetric division yields daughter cells whose genome reflects that of the parents, simultaneously protecting the parental cell from genetic errors that may occur during DNA replication. We hypothesized that long-lived epithelial cells are present in immortal, premalignant cell populations, undergo asymmetric division, retain their template DNA strands, and cycle both during allometric growth and during pregnancy. Methods The glands of 3-week-old immune-competent Balb/C female mice were used intact or cleared of host epithelium and implanted with ductal-limited, lobule-limited, or alveolar-ductal progenitor cells derived from COMMA-D1 pre-malignant epithelial cells. 5-Bromo-2-deoxyuridine (5-BrdU) was administered to identify those cells that retain their template DNA. Nulliparous mice were then either injected with [3H]-thymidine (3H-TdR) to distinguish 5-BrdU label-retaining cells that enter the cell cycle and euthanized, or mated, injected with 3H-TdR, and euthanized at various days after coitus. Sections were stained for estrogen receptor-α (ER-α) or progesterone receptor (PR) with immunohistochemistry. Cells labeled with both 5-BrdU and 3H-TdR were indicative of label-retaining epithelial cells (LRECs). Results Cells that retained a 5-BrdU label and cells labeled with [3H]-thymidine were found in all mice and were typically detected along the branching epithelium of mature mouse mammary glands. Cells containing double-labeled nuclei (LRECs) were found in the intact mammary glands of both pregnant and nulliparous mice, and in mammary glands implanted with premalignant cells. Double-labeled cells (3H-TdR/5-BrdU) represent a small portion of cells in the mammary gland that cycle and retain their template DNA (5-BrdU). Some label-retaining cells were also ER-α or PR positive. LRECs distributed their second label (3H-TdR) to daughter cells, and this effect persisted during pregnancy. LRECs, and small focal hyperplasia, were found in all immortalized premalignant mammary-implant groups. Conclusions The results indicate that a subpopulation of long-lived, label-retaining epithelial cells (LRECs) is present in immortal premalignant cell populations. These LRECs persist during pregnancy, retain their original DNA, and a small percentage express ER-α and PR. We speculate that LRECs in premalignant hyperplasia represent the long-lived (memory) cells that maintain these populations indefinitely.Peer Reviewe

    Human cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing CD4⁺ T cells.

    Get PDF
    Human cytomegalovirus (HCMV) is a widely prevalent human herpesvirus, which, after primary infection, persists in the host for life. In healthy individuals, the virus is well controlled by the HCMV-specific T cell response. A key feature of this persistence, in the face of a normally robust host immune response, is the establishment of viral latency. In contrast to lytic infection, which is characterised by extensive viral gene expression and virus production, long-term latency in cells of the myeloid lineage is characterised by highly restricted expression of viral genes, including UL138 and LUNA. Here we report that both UL138 and LUNA-specific T cells were detectable directly ex vivo in healthy HCMV seropositive subjects and that this response is principally CD4⁺ T cell mediated. These UL138-specific CD4⁺ T cells are able to mediate MHC class II restricted cytotoxicity and, importantly, show IFNγ effector function in the context of both lytic and latent infection. Furthermore, in contrast to CDCD4⁺ T cells specific to antigens expressed solely during lytic infection, both the UL138 and LUNA-specific CD4⁺ T cell responses included CD4⁺ T cells that secreted the immunosuppressive cytokine cIL-10. We also show that cIL-10 expressing CD4⁺ T-cells are directed against latently expressed US28 and UL111A. Taken together, our data show that latency-associated gene products of HCMV generate CD4⁺ T cell responses in vivo, which are able to elicit effector function in response to both lytic and latently infected cells. Importantly and in contrast to CD4⁺ T cell populations, which recognise antigens solely expressed during lytic infection, include a subset of cells that secrete the immunosuppressive cytokine cIL-10. This suggests that HCMV skews the T cell responses to latency-associated antigens to one that is overall suppressive in order to sustain latent carriage in vivo

    Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-γ

    Get PDF
    Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-γ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-γ-responsive promoters. However, neither synthesis nor secretion of IFN-γ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity

    Randomized trial of thymectomy in myasthenia gravis

    Get PDF

    Human Cytomegalovirus Fcγ Binding Proteins gp34 and gp68 Antagonize Fcγ Receptors I, II and III

    Get PDF
    Human cytomegalovirus (HCMV) establishes lifelong infection with recurrent episodes of virus production and shedding despite the presence of adaptive immunological memory responses including HCMV immune immunoglobulin G (IgG). Very little is known how HCMV evades from humoral and cellular IgG-dependent immune responses, the latter being executed by cells expressing surface receptors for the Fc domain of IgG (FcγRs). Remarkably, HCMV expresses the RL11-encoded gp34 and UL119-118-encoded gp68 type I transmembrane glycoproteins which bind Fcγ with nanomolar affinity. Using a newly developed FcγR activation assay, we tested if the HCMV-encoded Fcγ binding proteins (HCMV FcγRs) interfere with individual host FcγRs. In absence of gp34 or/and gp68, HCMV elicited a much stronger activation of FcγRIIIA/CD16, FcγRIIA/CD32A and FcγRI/CD64 by polyclonal HCMV-immune IgG as compared to wildtype HCMV. gp34 and gp68 co-expression culminates in the late phase of HCMV replication coinciding with the emergence of surface HCMV antigens triggering FcγRIII/CD16 responses by polyclonal HCMV-immune IgG. The gp34- and gp68-dependent inhibition of HCMV immune IgG was fully reproduced when testing the activation of primary human NK cells. Their broad antagonistic function towards FcγRIIIA, FcγRIIA and FcγRI activation was also recapitulated in a gain-of-function approach based on humanized monoclonal antibodies (trastuzumab, rituximab) and isotypes of different IgG subclasses. Surface immune-precipitation showed that both HCMV-encoded Fcγ binding proteins have the capacity to bind trastuzumab antibody-HER2 antigen complexes demonstrating simultaneous linkage of immune IgG with antigen and the HCMV inhibitors on the plasma membrane. Our studies reveal a novel strategy by which viral FcγRs can compete for immune complexes against various Fc receptors on immune cells, dampening their activation and antiviral immunity.DFG grant He 2526/6-2.European Commission grants QLRT-2001-01112 and MRTN-CT-2005-019248.Helmholtz Association through VISTRIE VH-VI-242.UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    Academic Advisement: A Commitment to Complete College Georgia

    No full text
    Complete College Georgia (CCG) is an initiative in the state that has all 30 University System of Georgia institutions strategizing ways to develop plans that will increase the number of college graduates by the year 2020. Governor Nathan Deal has indicated that graduation rates need to increase from 42% to 60% within the next seven years. With the anticipation of approximately 20% more students graduating to meet the 250,000 target, a closer look is needed at how an additional 50,000 graduates can be produced to make this goal a reality. Hence, to fulfill this goal, there needs to be an increase of approximately 7,143 graduates each year for the next seven years. This means approximately a three percent increase in students graduating each year. Under the paradigm of retention, progression, and graduation (RPG) and CCG, this study will use a questionnaire and quantitatively collect data from academic advisors regarding how they plan to approach the mandate in an effort to support Governor Deal’s plan to increase the graduation rate in the state of Georgia. In this presentation, the researcher will discuss the strong economical drive for institutions to not only increase the enrollment rate, but also produce more college graduates. The current global graduation rate will be discussed, specifically as it pertains to the United States of America. Furthermore, three local University System of Georgia institution’s graduation rates will be reviewed to assess whether the participants (who attend the session) support the likelihood of institutions meeting the governor’s goal. This is an interactive session where participants will be assigned a collegiate activity as well as participate in a in depth discussion about higher education graduation rates in the United States and at the local institutions. Deborah Kittrell-Mikell, Ed.S. Director of Academic Advisement Doctoral Student: Educational Leadership Department Leadership, Technology, & Human Developmen
    corecore