35 research outputs found

    Registry of BioBricks Models using CellML

    Get PDF
    A poster presented at BioSysBio 2007 and at SB3.0One of the main goals in Synthetic Biology is to assess the feasibility of building novel biological systems from interchangeable and standardized parts. In order to collect and share parts, a Registry of standardized DNA BioBricks[1] has been established at MIT. BioBricks can be assembled to form devices and systems to operate in living cells. Design of reliable devices and systems would benefit from accurate models of system function. To predict the function of systems built from many parts, we need to have accurate models for the parts and mechanisms to easily compose those part models into a system model. Therefore, in parallel to increasing the number of parts available and characterising them experimentally, a logical extension to the Registry would be to build a Registry of BioBrick models to complement the physical parts

    Building a global alliance of biofoundries (vol 10, 2040, 2019)

    Get PDF
    The original version of this Comment contained errors in the legend of Figure 2, in which the locations of the fifteenth and sixteenth GBA members were incorrectly given as '(15) Australian Genome Foundry, Macquarie University; (16) Australian Foundry for Advanced Biomanufacturing, University of Queensland.'. The correct version replaces this with '(15) Australian Foundry for Advanced Biomanufacturing (AusFAB), University of Queensland and (16) Australian Genome Foundry, Macquarie University'. This has been corrected in both the PDF and HTML versions of the Comment

    The thermo-regulatory control system in man and its study by digital computer simulation

    No full text
    Imperial Users onl

    Building the UK's industrial base in engineering biology

    No full text
    Abstract The paper describes the strategy and components that have been put in place to build the UK's research and industrial base in Engineering Biology. The initial section of the paper provides a brief historical overview of the development of the field in the United Kingdom. This comprised, principally, a major report by the Royal Academy of Engineering and a strategic roadmap for synthetic biology, together with the establishment of six new synthetic biology research centres, a national centre for the industrial translation of synthetic biology and five biofoundries. The next section of the paper describes the UK government’s policy for the field. Important elements of the implementation of the policy comprises people, Infrastructure, Business Environment and place. In this context, a number of important areas are addressed—including industrial translation; building an expert workforce and nucleating, incubating and accelerating a new engineering biology industry in the United Kingdom. The final portion of the paper addresses the author's view of the way forward. This comprises placing the development of the field, both nationally and internationally, in the context of the development of the Bioeconomy and Climate Change. The final section of the text addresses a specific strategic approach and the implications for the United Kingdom in relation to the development of its industrial base in Engineering Biology

    Design and functional assembly of synthetic biological parts and devices

    No full text
    Programming living cells with synthetic gene circuits to perform desired tasks has been a major theme in the emerging field of synthetic biology. However, gene circuit engineering currently lacks the same predictability and reliability as seen in other mature engineering disciplines. This thesis focuses on the design and engineering of novel modular and orthogonal biological devices, and the predictable functional assembly of modular biological elements (BioParts) into customisable larger biological devices. The thesis introduces the design methodology for engineering modular and orthogonal biological devices. A set of modular biological devices with digital logic functions, including the AND, NOT and combinatorial NAND gates, were constructed and quantitatively characterised. In particular, a novel genetic AND gate was engineered in Escherichia coli by redesigning the natural HrpR/HrpS heteroregulation motif in the hrp system of Pseudomonas syringae. The AND gate is orthogonal to E. coli chassis, and employs the alternative σ54-dependent gene transcription to achieve tight transcriptional control. Results obtained show that context has a large impact on part and device behaviour, established through the systematic characterisation of a series of biological parts and devices in various biophysical and genetic contexts. A new, effective strategy is presented for the assembly of BioParts into functional customised systems using engineered ‘incontext’ characterised modules aided by modelling, which can significantly increase the predictability of circuit construction by characterising the component parts and modules in the same biophysical and genetic contexts as anticipated in their final systems. Finally, the thesis presents the design and construction of an application-oriented integrated system – the cell density-dependent microbe-based biosensor. The in vivo biosensor was programmed to be able to integrate its own cell density signal through an engineered cell-cell communication module and a second environmental signal through an environment-responsive promoter in the logic AND manner, with GFP as the output readout.EThOS - Electronic Theses Online Servicethe UK Department for Education and Skills, Imperial College London and China Scholarship CouncilGBUnited Kingdo

    Segmentation and deformable modelling techniques for a virtual reality surgical simulator in hepatic oncology

    No full text
    Liver surgical resection is one of the most frequently used curative therapies. However, resectability is problematic. There is a need for a computer-assisted surgical planning and simulation system which can accurately and efficiently simulate the liver, vessels and tumours in actual patients. The present project describes the development of these core segmentation and deformable modelling techniques. For precise detection of irregularly shaped areas with indistinct boundaries, the segmentation incorporated active contours - gradient vector flow (GVF) snakes and level sets. To improve efficiency, a chessboard distance transform was used to replace part of the GVF effort. To automatically initialize the liver volume detection process, a rotating template was introduced to locate the starting slice. For shape maintenance during the segmentation process, a simplified object shape learning step was introduced to avoid occasional significant errors. Skeletonization with fuzzy connectedness was used for vessel segmentation. To achieve real-time interactivity, the deformation regime of this system was based on a single-organ mass-spring system (MSS), which introduced an on-the-fly local mesh refinement to raise the deformation accuracy and the mesh control quality. This method was now extended to a multiple soft-tissue constraint system, by supplementing it with an adaptive constraint mesh generation. A mesh quality measure was tailored based on a wide comparison of classic measures. Adjustable feature and parameter settings were thus provided, to make tissues of interest distinct from adjacent structures, keeping the mesh suitable for on-line topological transformation and deformation. More than 20 actual patient CT and 2 magnetic resonance imaging (MRI) liver datasets were tested to evaluate the performance of the segmentation method. Instrument manipulations of probing, grasping, and simple cutting were successfully simulated on deformable constraint liver tissue models. This project was implemented in conjunction with the Division of Surgery, Hammersmith Hospital, London; the preliminary reality effect was judged satisfactory by the consultant hepatic surgeon.EThOS - Electronic Theses Online ServiceLee Family ScholarshipGBUnited Kingdo

    Segmentation and deformable modelling techniques for a virtual reality surgical simulator in hepatic oncology

    No full text
    Liver surgical resection is one of the most frequently used curative therapies. However, resectability is problematic. There is a need for a computer-assisted surgical planning and simulation system which can accurately and efficiently simulate the liver, vessels and tumours in actual patients. The present project describes the development of these core segmentation and deformable modelling techniques. For precise detection of irregularly shaped areas with indistinct boundaries, the segmentation incorporated active contours - gradient vector flow (GVF) snakes and level sets. To improve efficiency, a chessboard distance transform was used to replace part of the GVF effort. To automatically initialize the liver volume detection process, a rotating template was introduced to locate the starting slice. For shape maintenance during the segmentation process, a simplified object shape learning step was introduced to avoid occasional significant errors. Skeletonization with fuzzy connectedness was used for vessel segmentation. To achieve real-time interactivity, the deformation regime of this system was based on a single-organ mass-spring system (MSS), which introduced an on-the-fly local mesh refinement to raise the deformation accuracy and the mesh control quality. This method was now extended to a multiple soft-tissue constraint system, by supplementing it with an adaptive constraint mesh generation. A mesh quality measure was tailored based on a wide comparison of classic measures. Adjustable feature and parameter settings were thus provided, to make tissues of interest distinct from adjacent structures, keeping the mesh suitable for on-line topological transformation and deformation. More than 20 actual patient CT and 2 magnetic resonance imaging (MRI) liver datasets were tested to evaluate the performance of the segmentation method. Instrument manipulations of probing, grasping, and simple cutting were successfully simulated on deformable constraint liver tissue models. This project was implemented in conjunction with the Division of Surgery, Hammersmith Hospital, London; the preliminary reality effect was judged satisfactory by the consultant hepatic surgeon.EThOS - Electronic Theses Online ServiceLee Family ScholarshipGBUnited Kingdo

    Addressing the post‐COVID era through engineering biology

    No full text
    Abstract Currently, the world is faced with two fundamental issues of great importance, namely climate change and the coronavirus pandemic. These are intimately involved with the need to control climate change and the need to switch from high carbon, unsustainable economies to low carbon economies. Inherent in this approach are the concepts of the bioeconomy and the Green Industrial Revolution. The article addresses both issues, but it, principally, focusses on the development of the bioeconomy. It considers how nations are divided in relation to the use of biotechnology and synthetic biology in terms of their bioeconomy strategies. The article addresses, as a central theme, the nature and role of engineering biology in these developments. Engineering biology is addressed in terms of BioDesign, coupled with high levels of automation (including AI and machine learning) to increase reproducibility and reliability to meet industrial standards. This lends itself to distributed manufacturing of products in a range of fields. Engineering biology is a platform technology that can be applied in a range of sectors. The bioeconomy, as an engine for economic growth is addressed—in terms of moving from oil‐based economies to bio‐based economies—using biomass, for example, using selected lignocellulosic waste as a feedstock

    Single-trial EEG source reconstruction for brain-computer interface.

    Full text link
    A new way to improve the classification rate of an EEG-based brain-computer interface (BCI) could be to reconstruct the brain sources of EEG and to apply BCI methods to these derived sources instead of raw measured electrode potentials. EEG source reconstruction methods are based on electrophysiological information that could improve the discrimination between BCI tasks. In this paper, we present an EEG source reconstruction method for BCI. The results are compared with results from raw electrode potentials to enable direct evaluation of the method. Features are based on frequency power change and Bereitschaft potential. The features are ranked with mutual information before being fed to a proximal support vector machine. The dataset IV of the BCI competition II and data from four subjects serve as test data. Results show that the EEG inverse solution improves the classification rate and can lead to results comparable to the best currently known methods
    corecore