186 research outputs found

    Artist-in-Residence in Recital

    Get PDF

    Milena Kitic, Mezzo-Soprano: Artist-in-Residence

    Get PDF

    Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    Get PDF
    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed

    Phase-Shift Transmission Line Method for Permittivity Measurement and Its Potential in Sensor Applications

    Get PDF
    This chapter offers a detailed insight into a dielectric characterization of the materials based on the phase-shift measurements of the transmission signal. The chapter will provide in-depth theoretical background of the phase-shift transmission line measurement in the microstrip architecture and determination of dielectric permittivity of design under test for several measurement configurations. Potential of the phase-shift method will be demonstrated through applications in the characterization of an unknown dielectric constant in multilayered structure, realization of the soil moisture sensor, and sensor for determination of the dielectric constant of a fluid in microfluidic channel. Moreover, specific techniques for increasing the phase shift based on the electromagnetic bandgap structure, the aperture in the ground plane and the left-handed effect will be presented. In the end, the realization of simple in-field detection device for determination of permittivity based on the phase-shift measurement will be demonstrated

    AUDASCITY: AUdio Denoising by Adaptive Social CosparsITY

    Get PDF
    International audienceThis work aims at introducing a new algorithm, AUDASCITY, and comparing its performance to the time-frequency block thresholding algorithm for the ill-posed problem of audio denoising. We propose a heuristics which combines time-frequency structure, cosparsity, and an adaptive scheme to denoise audio signals corrupted with white noise. We report that AUDASCITY outperforms state-of-the-art for each numerical comparison. While there is still room for some perceptual improvements, AUDASCITY's usefulness is shown when used as a front-end for a classification task

    The best of both worlds: synthesis-based acceleration for physics-driven cosparse regularization

    Get PDF
    International audienceRecently, a regularization framework for ill-posed inverse problems governed by linear partial differential equations has been proposed. Despite nominal equivalence between sparse synthesis and sparse analysis regularization in this context , it was argued that the latter is preferable from computational point of view (especially for huge scale optimization problems arising in physics-driven settings). However, the synthesis-based optimization benefits from simple, but effective all-zero initialization, which is not straightforwardly applicable in the analysis case. In this work we propose a multiscale strategy that aims at exploiting computational advantages of both regularization approaches

    Multivariate iterative hard thresholding for sparse decomposition with flexible sparsity patterns

    Full text link
    We address the problem of decomposing several consecutive sparse signals, such as audio time frames or image patches. A typical approach is to process each signal sequentially and independently, with an arbitrary sparsity level fixed for each signal. Here, we propose to process several frames simultaneously, allowing for more flexible sparsity patterns to be considered. We propose a multivariate sparse coding approach, where sparsity is enforced on average across several frames. We propose a Multivariate Iterative Hard Thresholding to solve this problem. The usefulness of the proposed approach is demonstrated on audio coding and denoising tasks. Experiments show that the proposed approach leads to better results when the signal contains both transients and tonal components

    Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats

    Get PDF
    BACKGROUND: Neuromyelitis optica (NMO) is a severe, disabling disease of the central nervous system (CNS) characterized by the formation of astrocyte-destructive, neutrophil-dominated inflammatory lesions in the spinal cord and optic nerves. These lesions are initiated by the binding of pathogenic aquaporin 4 (AQP4)-specific autoantibodies to astrocytes and subsequent complement-mediated lysis of these cells. Typically, these lesions form in a setting of CNS inflammation, where the blood–brain barrier is open for the entry of antibodies and complement. However, it remained unclear to which extent pro-inflammatory cytokines and chemokines contribute to the formation of NMO lesions. To specifically address this question, we injected the cytokines interleukin-1 beta, tumor necrosis factor alpha, interleukin-6, interferon gamma and the chemokine CXCL2 into the striatum of NMO-IgG seropositive rats and analyzed the tissue 24 hours later by immunohistochemistry. RESULTS: All injected cytokines and chemokines led to profound leakage of immunoglobulins into the injected hemisphere, but only interleukin-1 beta induced the formation of perivascular, neutrophil-infiltrated lesions with AQP4 loss and complement-mediated astrocyte destruction distant from the needle tract. Treatment of rat brain endothelial cells with interleukin-1 beta, but not with any other cytokine or chemokine applied at the same concentration and over the same period of time, caused profound upregulation of granulocyte-recruiting and supporting molecules. Injection of interleukin-1 beta caused higher numbers of blood vessels with perivascular, cellular C1q reactivity than any other cytokine tested. Finally, the screening of a large sample of CNS lesions from NMO and multiple sclerosis patients revealed large numbers of interleukin-1 beta-reactive macrophages/activated microglial cells in active NMO lesions but not in MS lesions with comparable lesion activity and location. CONCLUSIONS: Our data strongly suggest that interleukin-1 beta released in NMO lesions and interleukin-1 beta-induced production/accumulation of complement factors (like C1q) facilitate neutrophil entry and BBB breakdown in the vicinity of NMO lesions, and might thus be an important secondary factor for lesion formation, possibly by paving the ground for rapid lesion growth and amplified immune cell recruitment to this site
    • …
    corecore