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Abstract—This work aims at introducing a new algorithm,
AUDASCITY, and comparing its performance to the time-
frequency block thresholding algorithm for the ill-posed problem
of audio denoising. We propose a heuristics which combines
time-frequency structure, cosparsity, and an adaptive scheme to
denoise audio signals corrupted with white noise. We report that
AUDASCITY outperforms state-of-the-art for each numerical
comparison. While there is still room for some perceptual
improvements, AUDASCITY’s usefulness is shown when used
as a front-end for a classification task.

I. INTRODUCTION

Denoising is one of the most intensively studied inverse
problems in audio signal processing. Whether it originates
from the environment or the microphones, noise is an in-
evitable (and, usually, undesirable) component of audio record-
ings, calling for a denoising stage in signal processing
pipelines for applications such as music transcription, sound
classification, speech recognition and many others. To address
the noise problem, numerous approaches arose. Some of these
use statistical models [1], [2], others use spectral subtrac-
tion [3] or thresholding operators [4].

In the last two decades, a body of work addressing re-
construction and inverse problems in audio popularized time-
frequency (TF) sparse regularization, from the synthesis or
the analysis (cosparse) point of view [5], [6]. While the
synthesis approaches comprise a vast majority of these, it has
been demonstrated recently [6], [7] that the analysis model
can sometimes be advantageous, namely in terms of lower
computational cost. Additionally, it was recognized that group
sparse models, such as the so-called social sparsity [8], may
be more adapted to TF structures of audio signals.

The cosparse model alleges that the product z
def
= Ωx is

approximately sparse, where vector x is the target signal and
matrix Ω is the so-called (time-frequency) analysis operator.

Social sparsity aims at approximating the solution of a
problem for which the non-zero coefficients of a sparse signal
z appear in the form of overlapping groups, with some known
structure. However, TF structures vary from one audio signal
to another, hence there is a need for a more flexible approach.
A recent work based on Persistent Empirical Wiener (PEW)
shrinkage [9] allows to recover sparse signals by identifying
structures in the TF plane. PEW is used as sparsity enforcing
operator akin to the soft-thresholding stage in typical iterative
sparse recovery algorithms.

To highlight a given TF structure, algorithms based on social
sparsity [10] must explore the entire TF plane, which induces
a high computational cost. On the other hand, computationally
efficient schemes based on cosparsity, e.g. A-SPADE [7],
process each segment of an audio sequence independently, thus
somehow neglecting its long-term temporal structure. The idea
behind this work is to show how coupling the cosparse model
and the social shrinkage heuristics together can be beneficial
to audio restoration, with audio denoising as a use case.

Thus, in the following, we introduce an algorithm which
allows to retain at the same time favorable computational
properties of the cosparse prior, and the ability of the social
prior to emphasize TF useful structures. It is also able to
locally adapt the TF structure it is seeking, instead of choosing
one for the entire signal. First, we introduce the algorithm and
an accelerated version of it. Then, we present experimental
results of two kinds: numerical performance and success
indicators on classification task. Finally, we discuss perceptual
performance of denoising.

II. AUDASCITY ALGORITHM

The forward (degradation) model for the case of additive
noise is simply the vector sum

ỹn = x̃n + ẽn, (1)

with x̃n ∈ RL the nth overlapping frame of a discrete time-
domain audio signal x̃. ẽn ∈ RL is modeled as white Gaussian
noise of variance σ2 (assumed given or estimated). From
model (1) we window the segment ỹn such that yn = Wỹn.
Here W = diag(w) with w ∈ RL the weighting window. We
will denote by Yn ∈ RL×(2b+1) (resp. Xn) a matrix containing
the noisy (resp. clean) frames indexed by [n − b, n + b]. We
also define Zn ∈ CL×(2b+1) the frequency representation of
Xn such that Zn = AXn. Here A ∈ CP×L is a tight frame,
with P > L, that performs some local analysis e.g. a possibly
zero-padded Fourier transform. Due to the overlap between
windows, Zn is a local redundant analysis TF representation
(Gabor transform) of the underlying audio signal x̃.

A. Social Cosparse Modeling

We define time-frequency patterns Γ ∈ RF×T which em-
body a TF structure. Examples of Γ which we consider here
as binary masks are given in Figure (1) (see section III-A
for details). Rows account for the frequency dimension and



columns for the time. Fusing the concepts of cosparsity and
social sparsity allows us to promote a social sparse prior for
the redundant TF transforms Zn of the signal x̃, hence a
socially cosparse prior for x̃ and the name of the proposed
algorithm: “AUdio Denoising by Adaptive Social CosparsITY
(AUDASCITY)”.

B. Social Shrinkage

For clarity in the presentation, in the following we will omit
the n index and consider X̂,Y,Z, matrices of size L×(2b+ 1)
centered on frame n.

To exploit social cosparsity in the denoising process de-
scribed next, we use the Persistent Empirical Wiener Shrinkage
operator (defined in [9] as thresholding) as a sparsifying
step in the inner loop. This shrinkage explicitly includes a
time-frequency pattern Γ which promotes local TF structures
around each TF point. Let Z ∈ CL×(2b+1) be a local TF
representation, let ij be coordinates of a TF point in Z and
Pij the indexes corresponding to a binary TF patch of size
F×T centered in ij. ZPij ∈ CF×T is the matrix extracted from
Z on these indexes. PEW is defined as follows:

Sµ(Z|Γ )(ij) = Z(ij) ·
(
1− µ2

‖ZPij ◦ Γ‖22

)
+

, (2)

Where (·)+ = max(·, 0) is the positive part. The shrinkage
operator returns a “shrinked” vector (controlled by µ) follow-
ing a pattern given by Γ . ◦ denotes the Hadamard product.
Practically, as Sµ(·)(ij) is applied component-wise, it can be
computed through multidimensional convolution in the Fourier
domain.

Γ(1) Γ(2) Γ(3) Γ(4) Γ(5) Γ(6)

Figure 1. Extended set of time-frequency neighborhoods

C. Overview of the algorithm

As in A-SPADE [7], the technique stands on the Alternating
Direction Method of Multipliers (ADMM) framework [11].
The denoising procedure is based on two loops. The inner
loop performs the denoising given a predefined neighborhood
pattern Γ . The outer loop chooses the “optimal” pattern among
a subset of possible predefined patterns

{
Γ(k)

}
k=1...g

based on
the inner loop’s estimate X̂n obtained with a given Γ .

D. Inner loop

This part of the algorithm denoises Y given a predefined
TF pattern Γ . The pseudo code for this inner loop is given
in Algorithm 1 below with, 0 < α < 1 and ε = (2b +

1)σ
√∑L

j=1 wj, where wj is the jth entry of the window w

and σ2 is the noise variance.
Note that the X̂

(i)
update step admits a closed-form solution,

given the tight-frame assumption, similar to [7]. We compactly
write the inner loop algorithm as a parameterized procedure:
X̂ = A(Y, Γ, α, µ(0), ε, β, imax).

Algorithm 1 AUDASCITY Inner loop

Require: A,Y, Γ, α, µ(0), ε, β, imax

X̂
(0)

= Y, U(0) = 0, i = 1

Z(i) = Sµ(AX̂
(i−1)

+ U(i−1) | Γ )

X̂
(i)

=argmin
X

‖AX− Z(i) + U(i−1)‖2F

subject to ‖X−Y‖F ≤ ε

µ(i) = αµ(i−1)

if ‖AX(i)−Z(i)‖F

‖AX(i)‖F
≤ β or i ≥ imax then

terminate
else

U(i) = U(i−1) + AX̂
(i)
− Z(i)

i← i+ 1
end if
return X̂

(i)

Algorithm 2 AUDASCITY
Require: Y,

{
Γ(k)

}
k=1...g

, α, ε, β
imax = 10
for k = 1 to g do
µ
(0)
(k) = ‖Γ(k)‖0 × ‖vec(Y)‖∞

X̂(k) = A(Y, Γ(k), α, µ
(0)
(k), ε, β, imax)

Compute eΓ(k)
as in (3)

m = argmax k eΓ(k)

Γ = Γ(m)

µ(0) = µ
(imax)
(m)

end for
imax = 106

X̂ = A(Y, Γ, α, µ(0), ε, β, imax)
return X̂

E. Outer loop

Let
{
Γ(1), Γ(2), . . . , Γ(k), . . . Γ(g)

}
be a predefined set of

TF patterns. The “outer loop” consists in evaluating X̂(k) =

A(Y, Γ(k), α, µ
(0)
(k), ε, β, imax) for different Γ(k), with imax set

to a small value (e.g. = 10) and β the user-defined relative
accuracy.

The choice of α and µ(0)
(k) seems important as they tell the

inner loop algorithm how “aggressively” to perform regulariza-
tion. We set µ(0)

(k) = ‖Γ(k)‖0 × ‖vec(Y)‖∞, where vec(·) vec-

torizes the matrix. We also set α = min

(
σ√

var(vec(Y))
, 0.99

)
.

The choice of α reflects the “instantaneous” SNR in the region
being processed. The choice of these parameters seems to be
compatible with the numerous audio examples described in III
and could probably be validated on others.

Having computed all X̂(k) for k ∈ [1..g] (thus for all
possible Γ(k)), we evaluate the (empirical) entropy of each
residual R(k) := AX̂(k) −AY:

eΓ(k)
= −

Q∑
q=1

p̂q log2(p̂q), (3)



Table I
AUDASCITY PARAMETERS

Parameters Segment size [samples] Overlap [%] Window Overlapping segments Outer loop maximum iterations Accuracy Analysis operator Set of TF patterns Bins for eΓ(k)
calculation

Value L = 1024 75 Hamming b = 5 imax = 10 β = 10−3 A = DFT See Fig. 1 Q = 2b+1×L
20

where p̂ is the empirical probability distribution of the mag-
nitude of the entries of R(k), estimated by Q bins of nor-
malized histograms. The idea is that the best estimate X̂(k)

produces the residual of least informative content. In the case
of Additive White Gaussian Noise (AWGN), which is by
construction flat across the spectrogram, this choice makes an
obvious sense. Thus, we select the pattern Γ(m) which yields
the highest entropy eΓ(k)

for the considered signal region. Since
we set low imax, the evaluation procedure is quite fast, and
adds only (g − 1)imax iterations compared to the case where
only one pattern is considered. For the chosen Γ , we can
continue iterating from i = imax + 1 (using (X̂(k), µ

(imax)
(k) )

as the initial point) until reaching β-defined convergence.
The overall functioning of the AUDASCITY algorithm is

described by the pseudo code in Algorithm 2 for a given block
of adjacent frames Z ∈ RL×(2b+1).

F. Post-processing and overlap-add synthesis

Applying Algorithm 2 to the nth noisy matrix Yn yields
an estimate X̂n. We extract its middle column x̂n (the central
column of the block, corresponding to the segment yn) (see
Fig. 2). This estimate x̂n is stored in memory, and later used to
perform overlap-add synthesis, which yields the denoised sig-
nal. Similarly to the Block-Thresholding algorithm [4] which
we use as a comparison in the experimental section, we embed
a post-processing step. This last action performs a simple
frequency-domain Wiener filtering on x̂n before overlap-add
synthesis. It uses σ2 as the estimated noise power and the
squared magnitudes of Ax̂n as signal power. Practically, we
see that this post-processing is useful at very low SNR (i.e
0 dB) where we report “musical noise” effect.

G. Backward-caching scheme

To speed up computations, and possibly to account for pre-
viously processed information, we incorporate a “backward-
caching scheme”. This simply means that instead of processing
data blocks indexed by [n − b, n + b], we consider only the
ones linked to indexes in [n, n+ b], assuming that the frames
in the interval [n−b, n−1] have been already recovered. These
blocks, denoted by X̂bw, are then given to the algorithm, but
considered as fixed: the PEW shrinkage in the Z-update step is
applied to the augmented matrix [AX̂bw AX(i−1)+U(i−1) ]. Also,
when computing the empirical entropy, we account for the
X̂bw blocks.

We have seen that, in practice, this has a negligible effect
on the recovery performance, while indeed reducing the com-
putational cost (see III-B for details).

III. EXPERIMENTS

We conduct experiments on the MPEG items and the RWC
Music Database [12]. On the latter, we use the “Pop” and
“Jazz” genres as is, and subcategorize the “Classic” genre

yn−b yn

Yn

yn+1

Yn+1

yn+b+1

Figure 2. Segment processing for frame n and frame n+ 1

(Vocals, Chamber, Symphonies), leading to 6 subsets. All the
tracks are sufficiently diverse to reflect the robustness of the
approach on different audio content. We contaminate the audio
tracks with additive white gaussian noise at five SNR levels.
The AUDASCITY algorithm is confronted to the state-of-the-
art time-frequency block thresholding (BT). We note that BT is
parameterized with true variance σ2. AUDASCITY parameters
are as listed in table I. In this study, we choose a non redundant
DFT transform for A i.e. P = L. We conduct three phases
in testings: one to analyze SNR numerical results, a second
to look at performance on sound classification. Finally, we
compared perceptual differences in a listening test.

A. Numerical Results

We consider five input SNR levels in dB: {0, 5, 10, 15,
20}. The different stencils Γ(k) are listed in Fig. 1 with
rows corresponding to the frequency dimension and columns
accounting for the time dimension. Γ(1) emphasizes tonal
content while Γ(2) is more suitable for transients and attacks.
Γ(3) and Γ(4) are more likely to stress tonal transitions. Γ(5)

is designed to avoid pre-echo artifacts as in [13]. Finally, Γ(6)

is a default stencil foreseen to replace the others when no
particular structure is identified.

Fig. 3 shows the average improvement as a function of
input SNR (averaged over all audio tracks). We confirm that
for every setting with SNR above 0 dB and for all audio
tracks in RWC Jazz, Classic Chamber and Symphonies, our
approach is better in average in terms of numerical improve-
ment (statistical descriptors: p-values from t-tests are listed in
table II where smaller value means higher significance. Bold
results underline significant difference in performance with at
least a 5% confidence interval. As expected, the difference
in performance increases with the input SNR: this occurs
because BT relies strongly on the noise model, while we
are trying to “emphasize” the signal instead (more precisely,
its TF behavior). One hypothesis is that this model would
be robust enough to account for different types of stationary
noise (not only AWGN), but it would most probably require
different parameterization (e.g., changing the way the data
fidelity parameter ε is computed). We remark that another
work [13] based on social sparsity reported underperforming
in SNR compared to BT. We can also note that some results
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Figure 3. Numerical Results: SNR improvement [dB]

in [14] reveal usefulness of social priors on top of cosparse
models.

Table II
T-TESTS P-VALUES: AUDASCITY VS. BT STATISTICAL COMPARISON

SNR [dB] Vocals Chamber Symphonies Jazz Pop MPEG
0 0.9074 0.0516 0.1771 0.0581 3.96 e-5 0.96
5 0.8564 0.0239 0.0483 0.0517 0.0024 0.94
10 0.9904 0.0096 0.0166 0.0426 0.1110 0.97
15 0.8507 0.0011 0.0015 0.0029 0.31 0.85
20 0.7503 2.3 e-8 0.0001 6.72 e-7 2.19 e-7 0.8292

B. Computational Aspects

To quantify the speed performance of AUDASCITY we
perform run time tests on a laptop computer with 2.8 GHz Intel
Core i7 processor and 16 GB ram memory. All tests are run
on 30 second audio excerpts sampled at 16 kHz with Matlabr

in single thread mode. Table III displays all the results. The
computational cost is, as the improvement, strongly linked
to the input SNR. Indeed, as the SNR decreases, the inner
loop takes more iterations to converge. On the other hand,
runtime benefits clearly from the backward-caching scheme,
and it appears that we can reach a 30% speed-up without
performance loss. These encouraging results make it possible
to envision real-time applications even for moderate SNR.

Table III
AUDASCITY RUNTIME PERFORMANCES

Input SNR [dB] 0 5 10 15 20
Backward-caching

on
Runtime [s] 170.6 118.0 79.0 57.3 46.6
Improvement [dB] 9.24 6.35 3.64 1.41 0.14

Backward-caching
off

Runtime [s] 273.3 194.9 135.9 98.5 75.1
Improvement [dB] 9.28 6.58 4.02 1.98 0.66

C. Classification Results

One example for usefulness of a performant denoising
is classification of audio signals, where the noise pollution,
generally, has adversarial effect on performance. The extent to
which the performance is affected depends on several factors,
among them the type of extracted features being an important
one. For this reason, we conduct a small scale classification
benchmark, involving two types of features: i) widely used Mel
Frequency Cepstral Coefficients (MFCC), and ii) the features
based on the (second order) scattering transform, recently
proposed by Mallat et al. [15]. The latter has been shown to

outperform MFCC on several occasions, owing to its ability
to exploit information from a wider frequency range [16].

We use the training database provided by DCASE 2016
sound event recognition challenge [17]. The database split
in 15 classes, is randomly partitioned (balanced classes),
such that 70% of audio files are used for training, and the
remaining 30% are used as test data. The chosen database
enables us to directly evaluate the effect of SNR and denoising
on classification performance. The following experiments are
performed using a kernel-based SVM classifier [18], and the
features are extracted from overlapping audio segments of
duration T ≈ 0.18s. For scattering, we use Scatnet toolbox
provided by the authors [19].

Table IV presents the classification accuracy for the noise-
less, noisy (SNR = 0dB) and denoised audio, with the training
and test sets equally treated. The negative impact of low
SNR on accuracy can be clearly seen, particularly for the
MFCC features. Likewise, denoising leads to an improvement
in performance, with the proposed algorithm outperforming
state-of-the-art BT, for both types of features.

Table IV
CLASSIFICATION ACCURACY

Noiseless Audascity BT Noisy
MFCC 78% 68% 65% 63%
Scattering 93% 89% 86% 83%

D. Perceptual Results

While the objective assessment is certainly an important
quality metric, the usefulness of a performant denoising may
also include the auditory appearance. In this way, in this
part, we are interested in the perceptual quality of the de-
noising procedure. For that purpose, we use a listening test
available online through the application framework presented
in [20]. This procedure is based on the MUltiple Stimuli
with Hidden Reference and Anchor (MUSHRA) evaluation
framework [21]. We evaluate a subset of the conditions pre-
sented for the numerical experiments in Section III-A. For the
test not to last longer than 40 minutes, we choose 3 input
SNR {0, 5, 10 dB}. As for the sound material, we pick a
4 seconds excerpt randomly chosen from each genre of the
RWC database and the all MPEG database leading to a total
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Figure 4. Perceptual Results: MUSHRA Test

number of 39 conditions to test. 20 participants take part in
the listening experiment and are asked to rate the similarity
between the clean reference and the processed signals on a
scale from 0 to 100. Figure 4 displays results for the listening
experiment. The high variability between participants does
not bring a clear superiority of one or another algorithm.
For quite adversarial conditions (0 and 5dB) we can see a
slight advantage for BT while as the SNR increases, the trend
tends to reverse. For lowest SNR settings, participants reported
a pronounced “musical noise” effect. Some complementary
techniques like multichannel Wiener filter or sequential de-
noising [22] could be investigated in a further study to address
this issue. Besides, during informal pilot listening tests, we
noticed that the AUDASCITY estimate feels “richer”, in the
sense that it recovers both low and high frequency content
(as opposed to BT which is severely low-pass filtered). Even
though the perceptual quality is not always following the trend
of numerical improvements, this study gives promising results.
Further improvements and a validation for higher SNRs could
be considered in a future study.

IV. CONCLUSION

We presented a new algorithm to address the problem
of audio denoising. This method using “Social Cosparsity”,
is more efficient on SNR improvement than state-of-the-art.
Coupling sparsity structure in time-frequency and analysis
sparse priors on the signal to be denoised lets AUDASCITY
be fully adaptive and retain low complexity. Subjective eval-
uation shows encouraging results even if some weaknesses
are identified at low signal-to-noise ratios. On the other hand,
this new method showed improved classification results when
used as a denoising pre-processing block. Future work could
envision better perceptual improvements, include colored noise
and extend social cosparsity to other audio recovery tasks. A
study currently in progress will also feature comparisons with
denoising methods using simple cosparse priors.
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[7] S. Kitić, N. Bertin, and R. Gribonval, “Sparsity and cosparsity for audio declipping:
a flexible non-convex approach,” in Latent Variable Analysis and Signal Separation
(LVA/ICA). Liberec, Czech Republic: Springer, 2015, pp. 243–250.

[8] M. Kowalski, K. Siedenburg, and M. Dorfler, “Social sparsity! neighborhood
systems enrich structured shrinkage operators,” IEEE Transactions on Signal
Processing, vol. 61, no. 10, pp. 2498–2511, 2013.

[9] M. Kowalski, “Thresholding rules and iterative shrinkage/thresholding algorithm:
A convergence study,” in IEEE International Conference on Image Processing
(ICIP). IEEE, 2014, pp. 4151–4155.

[10] K. Siedenburg, M. Kowalski, and M. Dorfler, “Audio declipping with social
sparsity,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing, no. 2, pp. 1577–1581, 2014.

[11] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators,” Mathematical
Programming, vol. 55, no. 1-3, pp. 293–318, 1992.

[12] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music database:
Popular, classical and jazz music databases.” in ISMIR, vol. 2, 2002, pp. 287–
288.

[13] K. Siedenburg and M. Dörfler, “Audio denoising by generalized time-frequency
thresholding,” in Audio Engineering Society Conference: 45th International Con-
ference: Applications of Time-Frequency Processing in Audio. Audio Engineering
Society, 2012.
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