9 research outputs found

    Charge and lipophilicity are required for effective block of the hair-cell mechano-electrical transducer channel by FM1-43 and its derivatives

    Get PDF
    The styryl dye FM1-43 is widely used to study endocytosis but behaves as a permeant blocker of the mechano-electrical transducer (MET) channel in sensory hair cells, loading rapidly and specifically into the cytoplasm of hair cells in a MET channel-dependent manner. Patch clamp recordings of mouse outer hair cells (OHCs) were used to determine how a series of structural modifications of FM1-43 affect MET channel block. Fluorescence microscopy was used to assess how the modifications influence hair-cell loading in mouse cochlear cultures and zebrafish neuromasts. Cochlear cultures were also used to evaluate otoprotective potential of the modified FM1-43 derivatives. Structure-activity relationships reveal that the lipophilic tail and the cationic head group of FM1-43 are both required for MET channel block in mouse cochlear OHCs; neither moiety alone is sufficient. The extent of MET channel block is augmented by increasing the lipophilicity/bulkiness of the tail, by reducing the number of positive charges in the head group from two to one, or by increasing the distance between the two charged head groups. Loading assays with zebrafish neuromasts and mouse cochlear cultures are broadly in accordance with these observations but reveal a loss of hair-cell specific labelling with increasing lipophilicity. Although FM1-43 and many of its derivatives are generally cytotoxic when tested on cochlear cultures in the presence of an equimolar concentration of the ototoxic antibiotic gentamicin (5 µM), at a 10-fold lower concentration (0.5 µM), two of the derivatives protect OHCs from cell death caused by 48 h-exposure to 5 µM gentamicin

    Shedding light on optical cochlear implant progress

    No full text
    Electrical cochlear implants (CI) currently lack the frequency and intensity resolution to allow detection of complex sounds in background noise. The use of microscale optoelectronics in conjunction with optogenetics provides a promising direction in CI technology to allow improvements in spectral resolution, providing a richer soundscape for users. The present work offers the first instance of using multi‐channel μLED‐based optical CI to demonstrate optogenetic activation of auditory neurons

    Shedding light on optical cochlear implant progress

    No full text
    Electrical cochlear implants (CI) currently lack the frequency and intensity resolution to allow detection of complex sounds in background noise. The use of microscale optoelectronics in conjunction with optogenetics provides a promising direction in CI technology to allow improvements in spectral resolution, providing a richer soundscape for users. The present work offers the first instance of using multi‐channel μLED‐based optical CI to demonstrate optogenetic activation of auditory neurons

    DataSheet1_Charge and lipophilicity are required for effective block of the hair-cell mechano-electrical transducer channel by FM1-43 and its derivatives.pdf

    No full text
    The styryl dye FM1-43 is widely used to study endocytosis but behaves as a permeant blocker of the mechano-electrical transducer (MET) channel in sensory hair cells, loading rapidly and specifically into the cytoplasm of hair cells in a MET channel-dependent manner. Patch clamp recordings of mouse outer hair cells (OHCs) were used to determine how a series of structural modifications of FM1-43 affect MET channel block. Fluorescence microscopy was used to assess how the modifications influence hair-cell loading in mouse cochlear cultures and zebrafish neuromasts. Cochlear cultures were also used to evaluate otoprotective potential of the modified FM1-43 derivatives. Structure-activity relationships reveal that the lipophilic tail and the cationic head group of FM1-43 are both required for MET channel block in mouse cochlear OHCs; neither moiety alone is sufficient. The extent of MET channel block is augmented by increasing the lipophilicity/bulkiness of the tail, by reducing the number of positive charges in the head group from two to one, or by increasing the distance between the two charged head groups. Loading assays with zebrafish neuromasts and mouse cochlear cultures are broadly in accordance with these observations but reveal a loss of hair-cell specific labelling with increasing lipophilicity. Although FM1-43 and many of its derivatives are generally cytotoxic when tested on cochlear cultures in the presence of an equimolar concentration of the ototoxic antibiotic gentamicin (5 µM), at a 10-fold lower concentration (0.5 µM), two of the derivatives protect OHCs from cell death caused by 48 h-exposure to 5 µM gentamicin.</p

    DataSheet2_Charge and lipophilicity are required for effective block of the hair-cell mechano-electrical transducer channel by FM1-43 and its derivatives.pdf

    No full text
    The styryl dye FM1-43 is widely used to study endocytosis but behaves as a permeant blocker of the mechano-electrical transducer (MET) channel in sensory hair cells, loading rapidly and specifically into the cytoplasm of hair cells in a MET channel-dependent manner. Patch clamp recordings of mouse outer hair cells (OHCs) were used to determine how a series of structural modifications of FM1-43 affect MET channel block. Fluorescence microscopy was used to assess how the modifications influence hair-cell loading in mouse cochlear cultures and zebrafish neuromasts. Cochlear cultures were also used to evaluate otoprotective potential of the modified FM1-43 derivatives. Structure-activity relationships reveal that the lipophilic tail and the cationic head group of FM1-43 are both required for MET channel block in mouse cochlear OHCs; neither moiety alone is sufficient. The extent of MET channel block is augmented by increasing the lipophilicity/bulkiness of the tail, by reducing the number of positive charges in the head group from two to one, or by increasing the distance between the two charged head groups. Loading assays with zebrafish neuromasts and mouse cochlear cultures are broadly in accordance with these observations but reveal a loss of hair-cell specific labelling with increasing lipophilicity. Although FM1-43 and many of its derivatives are generally cytotoxic when tested on cochlear cultures in the presence of an equimolar concentration of the ototoxic antibiotic gentamicin (5 µM), at a 10-fold lower concentration (0.5 µM), two of the derivatives protect OHCs from cell death caused by 48 h-exposure to 5 µM gentamicin.</p

    Large-scale annotated dataset for cochlear hair cell detection and classification

    No full text
    &lt;p&gt;Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5 - 15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following &lt;i&gt;in-vivo&lt;/i&gt; and &lt;i&gt;in-vitro&lt;/i&gt;ototoxic drug application. The dataset includes over 107,000 hair cells which have been manually identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.&nbsp;&lt;/p&gt;&lt;p&gt;Associated code is provided here: https://github.com/indzhykulianlab/hcat-data&lt;/p&gt
    corecore