3,345 research outputs found

    Magnetic Structure of Umbral Dots Observed with Hinode Solar Optical Telescope

    Full text link
    High resolution and seeing-free spectroscopic observation of a decaying sunspot was done with the Solar Optical Telescope aboard Hinode satellite. The target was NOAA 10944 located in the west side of the solar surface from March 2 to March 4, 2007. The umbra included many umbral dots (UDs) with size of ~300 km in continuum light. We report the magnetic structures and Doppler velocity fields around UDs, based on the Milne-Eddington inversion of the two iron absorption lines at 6302 angstrom. The histograms of magnetic field strength(B), inclination angle(i), and Doppler velocity(v) of UDs showed a center-to-limb variation. Observed at disk center, UDs had (1)slightly smaller field strength (Delta B=-17 Gauss) and (2)relative blue shifts (Delta v=28 m s-1) compared to their surroundings. When the sunspot got close to the limb, UDs and their surroundings showed almost no difference in the magnetic and Doppler values. This center-to-limb variation can be understood by the formation height difference in a cusp-shaped magnetized atmosphere around UDs, due to the weakly magnetized hot gas intrusion. In addition, some UDs showed oscillatory light curves with multiple peaks around 10 min, which may indicate the presence of the oscillatory convection. We discuss our results in the frameworks of two theoretical models, the monolithic model (Schussler & Vogler 2006) and the field-free intrusion model (Spruit & Scharmer 2006).Comment: 8 pages, 8 figures, accepted for publication in PAS

    Spectroscopic Studies of Limb Spicules. I. Radial and Turbulent Velocities

    Full text link
    We made high-resolution spectroscopic observations of limb-spicules in H-alpha using the Vertical Spectrograph of Domeless Solar Telescope at Hida Observatory. While more than half of the observed spicules have Gaussian line-profiles, some spicules have distinctly asymmetric profiles which can be fitted with two Gaussian components. The faster of these components has radial velocities of 10 - 40 km/s and Doppler-widths of about 0.4 A which suggest that it is from a single spicule oriented nearly along the line-of-sight. Profiles of the slower components and the single-Gaussian type show very similar characteristics. Their radial velocities are less than 10 km/s and the Doppler-widths are 0.6 - 0.9 A. Non-thermal "macroturbulent" velocities of order 30 km/s are required to explain these width-values.Comment: 13 pages, 12 figures, to be published in Publications of the Astronomical Society of Japa

    Morphological study of penumbral formation

    Get PDF
    Penumbrae are known to be area of mainly horizontal magnetic field surrounding umbrae of relatively large and mature sunspots. In this paper, we observationally studied the formation of penumbrae in NOAA10978, where several penumbral formations were observed in G-band images of SOT/Hinode. Thanks to the continuous observation by Hinode, we could morphologically follow the evolution of sunspots and found that there are several paths to the penumbral formation: (1) Active accumulation of magnetic flux, (2) Rapid emergence of magnetic field, and (3) Appearance of twisted or rotating magnetic tubes. In all of these cases, magnetic fields are expected to sustain high inclination at the edges of flux tube concentration longer than the characteristic growth time of downward magnetic pumping.Comment: accepted for publication in PAS

    Characteristic Dependence of Umbral Dots on their Magnetic Structure

    Full text link
    Umbral dots (UDs) were observed in a stable sunspot in NOAA 10944 by the Hinode Solar Optical Telescope on 2007 March 1. The observation program consisted of blue continuum images and spectropolarimetric profiles of Fe I 630 nm line. An automatic detection algorithm for UDs was applied to the 2-hour continuous blue continuum images, and using the obtained data, the lifetime, size, and proper motion of UDs were calculated. The magnetic structure of the sunspot was derived through the inversion of the spectropolarimetric profiles. We calculated the correlations between UD's parameters (size, lifetime, occurrence rate, proper motion) and magnetic fields (field strength, inclination, azimuth), and obtained the following results: (1) Both the lifetime and size of UDs are almost constant regardless of the magnetic field strength at their emergence site. (2) The speed of UDs increases as the field inclination angle at their emergence site gets larger. (3) The direction of movement of UDs is nearly parallel to the direction of the horizontal component of magnetic field in the region with strongly inclined field, while UDs in the region with weakly inclined field show virtually no proper motion. Our results describe the basic properties of magnetoconvection in sunspots. We will discuss our results in comparison to recent MHD simulations by Schussler & Vogler (2006) and Rempel et al. (2009).Comment: 22 pages, 10 figures, accepted for publication in Ap

    Temporal power spectra of the horizontal velocity of the solar photosphere

    Full text link
    We have derived the temporal power spectra of the horizontal velocity of the solar photosphere. The data sets for 14 quiet regions observed with the Gband filter of Hinode/SOT are analyzed to measure the temporal fluctuation of the horizontal velocity by using the local correlation tracking (LCT) method. Among the high resolution (~0.2") and seeing-free data sets of Hinode/SOT, we selected the observations whose duration is longer than 70 minutes and cadence is about 30 s. The so-called k-{\omega} diagrams of the photospheric horizontal velocity are derived for the first time to investigate the temporal evolution of convection. The power spectra derived from k-omega diagrams typically have a double power law shape bent over at a frequency of 4.7 mHz. The power law index in the high frequency range is -2.4 while the power law index in the low frequency range is -0.6. The root mean square of the horizontal speed is about 1.1 km/s when we use a tracer size of 0.4" in LCT method. Autocorrelation functions of intensity fluctuation, horizontal velocity, and its spatial derivatives are also derived in order to measure the correlation time of the stochastic photospheric motion. Since one of possible energy sources of the coronal heating is the photospheric convection, the power spectra derived in the present study will be of high value to quantitatively justify various coronal heating models.Comment: 17 pages, 5 figures, accepted for publication in Astrophysical Journa

    類聚古集の本文改変 ―独立異文の検討から―

    Get PDF

    Properties of Umbral Dots as Measured from the New Solar Telescope Data and MHD Simulations

    Full text link
    We studied bright umbral dots (UDs) detected in a moderate size sunspot and compared their statistical properties to recent MHD models. The study is based on high resolution data recorded by the New Solar Telescope at the Big Bear Solar Observatory and 3D MHD simulations of sunspots. Observed UDs, living longer than 150 s, were detected and tracked in a 46 min long data set, using an automatic detection code. Total 1553 (620) UDs were detected in the photospheric (low chromospheric) data. Our main findings are: i) none of the analyzed UDs is precisely circular, ii) the diameter-intensity relationship only holds in bright umbral areas, and iii) UD velocities are inversely related to their lifetime. While nearly all photospheric UDs can be identified in the low chromospheric images, some small closely spaced UDs appear in the low chromosphere as a single cluster. Slow moving and long living UDs seem to exist in both the low chromosphere and photosphere, while fast moving and short living UDs are mainly detected in the photospheric images. Comparison to the 3D MHD simulations showed that both types of UDs display, on average, very similar statistical characteristics. However, i) the average number of observed UDs per unit area is smaller than that of the model UDs, and ii) on average, the diameter of model UDs is slightly larger than that of observed ones.Comment: Accepted by the AP
    corecore