63 research outputs found

    Diagnosis of infections in newborns using a new particle-mediated immunoassay for serum C-reactive protein

    Get PDF
    C-reactive protein (CRP) levels were measured using a new particle-mediated immunoassay. Tests for precision and linearity of this method gave satisfactory results. The minimum sensitivity of the assay was 1 ng/ml. Interference by bilirubin (<220mg/l) and haemoglobin (<20g/l) was not observed. Using this method, CRP was assayed as a means of monitoring for infection in newborns up to 72 h after delivery. The pattern of time course elevation curves was similar for both groups (10 healthy subjects and 26 patients), but the serum CRP (ng/ml) of infected newborns rose significantly higher than in healthy subjects at 24 h after birth. The rate of increase of CRP (∆CRP; ng/ml/h) may be a more useful parameter to detect infection, since a significant change in ∆CRP was apparent only 12 h after birth. The reported method was reliable and the parameters obtained were considered clinically useful for early detection of infection

    Intracellular isotope localization in Ammonia sp. (Foraminifera) of oxygen-depleted environments : results of nitrate and sulfate labeling experiments

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 163, doi:10.3389/fmicb.2016.00163.Some benthic foraminiferal species are reportedly capable of nitrate storage and denitrification, however, little is known about nitrate incorporation and subsequent utilization of nitrate within their cell. In this study, we investigated where and how much 15N or 34S were assimilated into foraminiferal cells or possible endobionts after incubation with isotopically labeled nitrate and sulfate in dysoxic or anoxic conditions. After 2 weeks of incubation, foraminiferal specimens were fixed and prepared for Transmission Electron Microscopy (TEM) and correlative nanometer-scale secondary ion mass spectrometry (NanoSIMS) analyses. TEM observations revealed that there were characteristic ultrastructural features typically near the cell periphery in the youngest two or three chambers of the foraminifera exposed to anoxic conditions. These structures, which are electron dense and ~200–500 nm in diameter and co-occurred with possible endobionts, were labeled with 15N originated from 15N-labeled nitrate under anoxia and were labeled with both 15N and 34S under dysoxia. The labeling with 15N was more apparent in specimens from the dysoxic incubation, suggesting higher foraminiferal activity or increased availability of the label during exposure to oxygen depletion than to anoxia. Our results suggest that the electron dense bodies in Ammonia sp. play a significant role in nitrate incorporation and/or subsequent nitrogen assimilation during exposure to dysoxic to anoxic conditions.This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Young Scientists B No. 22740340 and Scientific Research C No. 24540504 to HN), an Invitation Fellowship for Research in Japan to JB by Japan Society for the Promotion of Science (JSPS), the Robert W. Morse Chair for Excellence in Oceanography at WHOI to JB, and The Investment in Science Fund at WHOI to JB

    Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nomaki, H., Uejima, Y., Ogawa, N. O., Yamane, M., Watanabe, H. K., Senokuchi, R., Bernhard, J. M., Kitahashi, T., Miyairi, Y., Yokoyama, Y., Ohkouchi, N., & Shimanaga, M. Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses. Marine Ecology Progress Series, 622, (2019): 49-65, doi:10.3354/meps13053.Deep-sea hydrothermal vents host unique marine ecosystems that rely on organic matter produced by chemoautotrophic microbes together with phytodetritus. Although meiofauna can be abundant at such vents, the small size of meiofauna limits studies on nutritional sources. Here we investigated dietary sources of meio- and macrofauna at hydrothermal vent fields in the western North Pacific using stable carbon and nitrogen isotope ratios (δ13C, δ15N) and natural-abundance radiocarbon (Δ14C). Bacterial mats and Paralvinella spp. (polychaetes) collected from hydrothermal vent chimneys were enriched in 13C (up to -10‰) and depleted in 14C (-700 to -580‰). The δ13C and Δ14C values of dirivultid copepods, endemic to hydrothermal vent chimneys, were -11‰ and -661‰, respectively, and were similar to the values in the bacterial mats and Paralvinella spp. but distinct from those of nearby non-vent sediments (δ13C: ~-24‰) and water-column plankton (Δ14C: ~40‰). In contrast, δ13C values of nematodes from vent chimneys were similar to those of non-vent sites (ca. -25‰). Results suggest that dirivultids relied on vent chimney bacterial mats as their nutritional source, whereas vent nematodes did not obtain significant nutrient amounts from the chemolithoautotrophic microbes. The Δ14C values of Neoverruca intermedia (vent barnacle) suggest they gain nutrition from chemoautotrophic microbes, but the source of inorganic carbon was diluted with bottom water much more than those of the Paralvinella habitat, reflecting Neoverruca’s more distant distribution from active venting. The combination of stable and radioisotope analyses on hydrothermal vent organisms provides valuable information on their nutritional sources and, hence, their adaptive ecology to chemosynthesis-based ecosystems.We are grateful to the crews and scientists of the R/V ‘Natsushima’ and the ROV ‘Hyper-Dolphin’ of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) during the NT12-10, NT13-09 and NT14-06 cruises, and the R/V ‘Kaimei’ and the KM-ROV of JAMSTEC during the KM-ROV training cruise. We thank Yuki Iwadate for her help on sample preparations and 2 anonymous reviewers and the editor, who provided helpful comments on an earlier version of this manuscript. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Scientific Research C 26440246 to M.S.), the Japan Society for the Promotion of Science (Invitational fellowships for research in Japan, S14032 to J.M.B.), the WHOI Robert W. Morse Chair for Excellence in Oceanography, and The Investment in Science Fund at WHOI

    Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain

    Get PDF
    The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis.European Community [222719 - LIFECYCLE]; Foundation for Science and Technology of Portugal (FCT) [SFRH/BPD/66742/2009, PEst-C/MAR/LA0015/2011]; Valencian Regional Goverment [Prometeo II/2014/051]; Spanish Ministry of Science and Innovation (MICINN) [CSD 2007-0002]info:eu-repo/semantics/publishedVersio

    Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    Get PDF
    BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish
    • …
    corecore