1,362 research outputs found

    Magnetic and Structural Studies of the Quasi-Two-Dimensional Spin-Gap System (CuCl)LaNb2O7

    Full text link
    We report magnetization, nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and transmission electron microscopy (TEM) studies on the quasi-two-dimensional spin-gap system (CuCl)LaNb2O7, a possible candidate for the J1-J2 model on a square lattice. A sharp single NQR line is observed at the Cu and Cl sites, indicating that both Cu and Cl atoms occupy a unique site. However, the electric field gradient tensors at the Cu, Cl, and La sites do not have axial symmetry. This is incompatible with the reported crystal structure. Thus the J1-J2 model has to be modified. We propose alternative two-dimensional dimer models based on the NMR, NQR, and TEM results. The value of the hyperfine coupling constant at the Cu sites indicates that the spin density is mainly on the d(3z2-r2) orbital (z parallel c). At 1.5 K, Cu- and Nb-NMR signals disappear above the critical field Bc1 = 10.3 T determined from the onset of the magnetization, indicating a field-induced magnetic phase transition at Bc1.Comment: 9 pages, 16 figure

    Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound

    Full text link
    In many cases a nonlinear scalar field with potential VV can lead to accelerated expansion in cosmological models. This paper contains mathematical results on this subject for homogeneous spacetimes. It is shown that, under the assumption that VV has a strictly positive minimum, Wald's theorem on spacetimes with positive cosmological constant can be generalized to a wide class of potentials. In some cases detailed information on late-time asymptotics is obtained. Results on the behaviour in the past time direction are also presented.Comment: 16 page

    Intermediate inflation and the slow-roll approximation

    Full text link
    It is shown that spatially homogeneous solutions of the Einstein equations coupled to a nonlinear scalar field and other matter exhibit accelerated expansion at late times for a wide variety of potentials VV. These potentials are strictly positive but tend to zero at infinity. They satisfy restrictions on V/VV'/V and V/VV''/V' related to the slow-roll approximation. These results generalize Wald's theorem for spacetimes with positive cosmological constant to those with accelerated expansion driven by potentials belonging to a large class.Comment: 19 pages, results unchanged, additional backgroun

    Can Gravitational Waves Prevent Inflation?

    Get PDF
    To investigate the cosmic no hair conjecture, we analyze numerically 1-dimensional plane symmetrical inhomogeneities due to gravitational waves in vacuum spacetimes with a positive cosmological constant. Assuming periodic gravitational pulse waves initially, we study the time evolution of those waves and the nature of their collisions. As measures of inhomogeneity on each hypersurface, we use the 3-dimensional Riemann invariant I (3) ⁣Rijkl (3) ⁣Rijkl{\cal I}\equiv {}~^{(3)\!}R_{ijkl}~^{(3)\!}R^{ijkl} and the electric and magnetic parts of the Weyl tensor. We find a temporal growth of the curvature in the waves' collision region, but the overall expansion of the universe later overcomes this effect. No singularity appears and the result is a ``no hair" de Sitter spacetime. The waves we study have amplitudes between 0.020ΛI1/2125.0Λ0.020\Lambda \leq {\cal I}^{1/2} \leq 125.0\Lambda and widths between 0.080lHl2.5lH0.080l_H \leq l \leq 2.5l_H, where lH=(Λ/3)1/2l_H=(\Lambda/3)^{-1/2}, the horizon scale of de Sitter spacetime. This supports the cosmic no hair conjecture.Comment: LaTeX, 11 pages, 3 figures are available on request <To [email protected] (Hisa-aki SHINKAI)>, WU-AP/29/9

    Closed cosmologies with a perfect fluid and a scalar field

    Get PDF
    Closed, spatially homogeneous cosmological models with a perfect fluid and a scalar field with exponential potential are investigated, using dynamical systems methods. First, we consider the closed Friedmann-Robertson-Walker models, discussing the global dynamics in detail. Next, we investigate Kantowski-Sachs models, for which the future and past attractors are determined. The global asymptotic behaviour of both the Friedmann-Robertson-Walker and the Kantowski-Sachs models is that they either expand from an initial singularity, reach a maximum expansion and thereafter recollapse to a final singularity (for all values of the potential parameter kappa), or else they expand forever towards a flat power-law inflationary solution (when kappa^2<2). As an illustration of the intermediate dynamical behaviour of the Kantowski-Sachs models, we examine the cases of no barotropic fluid, and of a massless scalar field in detail. We also briefly discuss Bianchi type IX models.Comment: 15 pages, 10 figure

    Energy Density of Non-Minimally Coupled Scalar Field Cosmologies

    Get PDF
    Scalar fields coupled to gravity via ξRΦ2\xi R {\Phi}^2 in arbitrary Friedmann-Robertson-Walker backgrounds can be represented by an effective flat space field theory. We derive an expression for the scalar energy density where the effective scalar mass becomes an explicit function of ξ\xi and the scale factor. The scalar quartic self-coupling gets shifted and can vanish for a particular choice of ξ\xi. Gravitationally induced symmetry breaking and de-stabilization are possible in this theory.Comment: 18 pages in standard Late

    Late-time oscillatory behaviour for self-gravitating scalar fields

    Full text link
    This paper investigates the late-time behaviour of certain cosmological models where oscillations play an essential role. Rigorous results are proved on the asymptotics of homogeneous and isotropic spacetimes with a linear massive scalar field as source. Various generalizations are obtained for nonlinear massive scalar fields, kk-essence models and f(R)f(R) gravity. The effect of adding ordinary matter is discussed as is the case of nonlinear scalar fields whose potential has a degenerate zero.Comment: 17 pages, additional reference

    Study of blind thrust faults underlying Tokyo and Osaka urban areas using a combination of high-resolution seismic reflection profiling and continuous coring

    Get PDF
    We acquired high-resolution seismic reflection profiles and continuously cored boreholes to evaluate active flexures produced by major blind thrust fault systems within two densely populated Neogene-Quaternary sedimentary basins in Japan: the Fukaya Fault System near Tokyo in the Kanto Basin and the Uemachi Fault System in the Osaka Basin. The high-resolution seismic reflection survey made clear the length, geometry and growth history of fault-related folds, or flexures formed above the two blind thrusts. Continuously cored boreholes linked with high-resolution seismic profiles enabled us to estimate the uplift rate as defined by shallow stratigraphic horizons and constrain the age of the most recent growth of the flexures during earthquakes on the Fukaya and Uemachi fault systems. Even with the high quality of the data we collected, it is still not possible to exactly constrain the age of the most recent blind thrust earthquake recorded by flexure of these fault-related folds. Data presented in this paper form the basis for future efforts aimed at mechanical and kinematic models for fault growth to evaluate the activity of blind thrusts underlying urban areas

    No Chaos in Brane-World Cosmology

    Full text link
    We discuss the asymptotic dynamical evolution of spatially homogeneous brane-world cosmological models close to the initial singularity. We find that generically the cosmological singularity is isotropic in Bianchi type IX brane-world models and consequently these models do not exhibit Mixmaster or chaotic-like behaviour close to the initial singularity. We argue that this is typical of more general cosmological models in the brane-world scenario. In particular, we show that an isotropic singularity is a past-attractor in all orthogonal Bianchi models and is a local past-attractor in a class of inhomogeneous brane-world models.Comment: Updated Refs. Final version to appear in Class. Quantum Gra
    corecore