19 research outputs found

    Is Computed-Tomography-Based Body Composition a Reliable Predictor of Chemotherapy-Related Toxicity in Pancreatic Cancer Patients?

    Full text link
    BACKGROUND Malnutrition, loss of weight and of skeletal muscle mass are frequent in pancreatic cancer patients, a majority of which will undergo chemotherapy over the course of their disease. Available data suggest a negative prognostic role of these changes in body composition on disease outcomes; however, it is unclear whether tolerance to chemotherapeutic treatment is similarly and/or negatively affected. We aimed to explore this association by retrospectively assessing changes in body composition and chemotherapy-related toxicity in a cohort of advanced pancreatic cancer patients. METHODS Body composition was evaluated through clinical parameters and through radiological assessment of muscle mass, skeletal muscle area, skeletal muscle index and skeletal muscle density; and an assessment of fat distribution by subcutaneous adipose tissue and visceral adipose tissue. We performed descriptive statistics, pre/post chemotherapy comparisons and uni- and multivariate analyses to assess the relation between changes in body composition and toxicity. RESULTS Toxicity risk increased with an increase of skeletal muscle index (OR: 1.03) and body mass index (OR: 1.07), whereas it decreased with an increase in skeletal muscle density (OR: 0.96). Multivariate analyses confirmed a reduction in the risk of toxicity only with an increase in skeletal muscle density (OR: 0.96). CONCLUSIONS This study suggests that the retrospective analysis of changes in body composition is unlikely to be useful to predict toxicity to gemcitabine-nab-paclitaxel

    On the applicability of Drop Profile Analysis Tensiometry at high flow rates using an interface tracking method

    No full text
    In this work studies of growing water droplets in air are presented, with the aim to assess the applicability limit of the Droplet Profile Analysis Tensiometry (PAT). High inflow rates are applied for systems containing surfactants with high adsorption rates. However, under dynamic formation conditions, the measured surface tension values deviate from the theoretical values even for pure systems. Therefore, Computational Fluid Dynamics (CFD) is applied to gain detailed insight into the hydrodynamics of the growing drop. Since the flow is dominated by surface tension forces, an interface tracking approach is applied, which is able to capture the flow in a physically correct way. At high flow rates the inflow jet is not fully dissipated before approaching the free surface. Therefore, the pressure profile inside the drop is not uniform as is required in the derivation of the Gauss Laplace equation. The shape of the drop no longer represents the Gauss Laplace profile corresponding to the theoretical surface tension coefficient. As result we can confirm that the evaluation of surface tension by fitting to the Gauss Laplace Equation is not valid for dynamic droplet formations. Indications for future improvements of the evaluation procedure are provided. (C) 2012 Elsevier B.V. All rights reserved

    Towards a comprehensive climate impacts assessment of solar geoengineering

    No full text
    Despite a growing literature on the climate response to solar geoengineering – proposals to cool the planet by increasing the planetary albedo – there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar geoengineered climate and identify major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can build upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges and risks presented by solar geoengineering
    corecore