1,833 research outputs found
Anticipated results from dust experiments on cometary missions
The major scientific objectives of a mission are: to determine the chemical nature and physical structure of comet nuclei, and to characterize the changes that occur as a function of time orbital position; to characterize the chemical and physical nature of the atmospheres and ionospheres of comets as well as the processes that occur in them, and to characterize the development of the atmospheres and ionospheres as functions of time and orbital position; and to determine the nature of comet tails and processes by which they are formed, and to characterize the interaction of comets with the solar wind. Since dust is a major constituent of a comet, the achievement of these goals requires the intensive study of the paticulate emission from a comet
Particles from comet Kohoutek detected by the micrometeoroid experiment on HEOS 2
HEOS B measurements on particles ejected from comet Kohoutek reflect average particle rate as a function of particle speed and mass in relation to random distribution with known speed from the interplanetary region. The micrometeoroid experiment detector onboard the satellite passed through the orbital plane of the comet and encountered ejected particles for approximately two months
Vehicle health management using adaptive techniques
Automated engine diagnostics using cognitive computing methodologies are investigated. Space shuttle main engine vibrational data is used to test the algorithms
Low Frequency Tilt Seismology with a Precision Ground Rotation Sensor
We describe measurements of the rotational component of teleseismic surface
waves using an inertial high-precision ground-rotation-sensor installed at the
LIGO Hanford Observatory (LHO). The sensor has a noise floor of 0.4 nrad at 50 mHz and a translational coupling of less than 1 rad/m
enabling translation-free measurement of small rotations. We present
observations of the rotational motion from Rayleigh waves of six teleseismic
events from varied locations and with magnitudes ranging from M6.7 to M7.9.
These events were used to estimate phase dispersion curves which shows
agreement with a similar analysis done with an array of three STS-2
seismometers also located at LHO
Blip glitches in Advanced LIGO data
Blip glitches are short noise transients present in data from ground-based
gravitational-wave observatories. These glitches resemble the
gravitational-wave signature of massive binary black hole mergers. Hence, the
sensitivity of transient gravitational-wave searches to such high-mass systems
and other potential short duration sources is degraded by the presence of blip
glitches. The origin and rate of occurrence of this type of glitch have been
largely unknown. In this paper we explore the population of blip glitches in
Advanced LIGO during its first and second observing runs. On average, we find
that Advanced LIGO data contains approximately two blip glitches per hour of
data. We identify four subsets of blip glitches correlated with detector
auxiliary or environmental sensor channels, however the physical causes of the
majority of blips remain unclear
Tethered subsatellite study
The results are presented of studies performed relating to the feasibility of deploying a subsatellite from the shuttle by means of a tether. The dynamics, the control laws, the aerodynamics, the heating, and some communication considerations of the tethered subsatellite system are considered. Nothing was found that prohibits the use of a subsatellite joined to the shuttle by a long (100 km) tether. More detailed studies directed at specific applications are recommended
Performance of the Charge Injection Capability of Suzaku XIS
A charge injection technique is applied to the X-ray CCD camera, XIS (X-ray
Imaging Spectrometer) onboard Suzaku. The charge transfer inefficiency (CTI) in
each CCD column (vertical transfer channel) is measured by the injection of
charge packets into a transfer channel and subsequent readout. This paper
reports the performances of the charge injection capability based on the ground
experiments using a radiation damaged device, and in-orbit measurements of the
XIS. The ground experiments show that charges are stably injected with the
dispersion of 91eV in FWHM in a specific column for the charges equivalent to
the X-ray energy of 5.1keV. This dispersion width is significantly smaller than
that of the X-ray events of 113eV (FWHM) at approximately the same energy. The
amount of charge loss during transfer in a specific column, which is measured
with the charge injection capability, is consistent with that measured with the
calibration source. These results indicate that the charge injection technique
can accurately measure column-dependent charge losses rather than the
calibration sources. The column-to-column CTI correction to the calibration
source spectra significantly reduces the line widths compared to those with a
column-averaged CTI correction (from 193eV to 173eV in FWHM on an average at
the time of one year after the launch). In addition, this method significantly
reduces the low energy tail in the line profile of the calibration source
spectrum.Comment: Paper contains 18 figures and 15 tables. Accepted for publication in
PAS
Biologic Monitoring to Characterize Organophosphorus Pesticide Exposure among Children and Workers: An Analysis of Recent Studies in Washington State
We examined findings from five organophosphorus pesticide biomonitoring studies conducted in Washington State between 1994 and 1999. We compared urinary dimethylthiophosphate (DMTP) concentrations for all study groups and composite dimethyl alkylphosphate (DMAP) concentrations for selected groups. Children of pesticide applicators had substantially higher metabolite levels than did Seattle children and farmworker children (median DMTP, 25 Ī¼g/L; p < 0.0001). Metabolite levels of children living in agricultural communities were elevated during periods of crop spraying. Median DMTP concentrations for Seattle children and farmworker children did not differ significantly (6.1 and 5.8 Ī¼g/L DMTP, respectively; p = 0.73); however, the DMAP concentrations were higher for Seattle children than for farmworker children (117 and 87 nmol/L DMAP, respectively; p = 0.007). DMTP concentrations of U.S. children 6ā11 years of age (1999ā2000 National Health and Nutrition Examination Survey population) were higher than those of Seattle children and farmworker children at the 75th, 90th, and 95th percentiles. DMTP concentrations for workers actively engaged in apple thinning were 50 times higher than DMTP concentrations for farmworkers sampled outside of peak exposure periods. We conclude that workers who have direct contact with pesticides should continue to be the focus of public health interventions and that elevated child exposures in agricultural communities may occur during active crop-spraying periods and from living with a pesticide applicator. Timing of sample collection is critical for the proper interpretation of pesticide biomarkers excreted relatively soon after exposure. We surmise that differences in dietary exposure can explain the similar exposures observed among farmworker children, children living in the Seattle metropolitan area, and children sampled nationally
- ā¦