242 research outputs found

    Complexity of transcriptional regulation within the Rag locus: identification of a second Nwc promoter region within the Rag2 intron

    Get PDF
    Nwc represents a mysterious third evolutionarily conserved gene within the Rag locus. Here, we analyzed the phenotype of Nwctmpro1 mice, in which the Rag2 intragenic region containing the previously identified promoter responsible for initiating transcription of Nwc in all cells except lymphocytes was deleted by homologous recombination. Despite strong nonlymphocyte-specific inhibition of Nwc transcription which runs through the regulatory region of Rag genes, their expression remained suppressed, and no developmental, morphological, anatomical, functional, physiological, or cellular defects in Nwctmpro1 mice could be observed. However, careful analysis of the Rag2 intergenic region uncovered a second evolutionarily conserved Nwc promoter region from which a previously unknown Nwc transcript can be generated in nonlymphocytes of Nwctmpro1 and normal mice. The above results reveal an unexpected additional complexity of transcriptional regulation within the Rag/Nwc locus and show that strong inhibition of Nwc transcription in nonlymphoid cells is well tolerated. Complete inactivation of Nwc is necessary to get insight into its function at transcriptional and posttranscriptional levels

    T Cell-Intrinsic and -Extrinsic Contributions of the IFNAR/STAT1-Axis to Thymocyte Survival

    Get PDF
    STAT1 is an essential part of interferon signaling, and STAT1-deficiency results in heightened susceptibility to infections or autoimmunity in both mice and humans. Here we report that mice lacking the IFNα/β-receptor (IFNAR1) or STAT1 display impaired deletion of autoreactive CD4+CD8+-T-cells. Strikingly, co-existence of WT T cells restored thymic elimination of self-reactive STAT1-deficient CD4+CD8+-T cells. Analysis of STAT1-deficient thymocytes further revealed reduced Bim expression, which was restored in the presence of WT T cells. These results indicate that type I interferons and STAT1 play an important role in the survival of MHC class I-restricted T cells in a T cell intrinsic and non-cell intrinsic manner that involves regulation of Bim expression through feedback provided by mature STAT1-competent T cells

    A Study of T Cell Tolerance to the Tumor-Associated Antigen MDM2: Cytokines Can Restore Antigen Responsiveness, but Not High Avidity T Cell Function

    Get PDF
    BACKGROUND: Most tumor-associated antigens (TAA) currently used for immunotherapy of cancer are also expressed in normal tissues, which may induce tolerance and impair T cell-mediated immunity. However, there is limited information about how physiological expression in normal tissues alters the function of TAA-specific T cells. METHODOLOGY/PRINCIPAL FINDINGS: We used a T cell receptor transgenic model to study how MDM2 expression in normal tissues affects the function of T cells specific for this TAA that is found at high levels in many different types of tumors. We found that some MDM2-specific T cells escaped thymic deletion and persisted in the peripheral T cell pool. When stimulated with antigen, these T cells readily initiated cell division but failed to proliferate and expand, which was associated with a high rate of apoptosis. Both IL-2 and IL-15 efficiently rescued T cell survival and antigen-specific T cell proliferation, while IL-7 and IL-21 were ineffective. Antigen-stimulated T cells showed impaired expression of the effector molecules CD43, granzyme-B and IFN-γ, a defect that was completely restored when T cells were stimulated in the presence of IL-2. In contrast, IL-15 and IL-21 only restored the expression of CD43 and granzyme-B, but not IFN-γ production. Finally, peptide titration experiments with IL-2 rescued T cells indicated that they were of lower avidity than non-tolerant control T cells expressing the same TCR. CONCLUSIONS/SIGNIFICANCE: These data indicate that cytokines can rescue the antigen-specific proliferation and effector function of MDM2-specific T cells, although this does not lead to the recovery of high avidity T cell function. This study sheds light on possible limitations of immunotherapy approaches that target widely expressed TAA, such as MDM2

    CHOP Mediates Endoplasmic Reticulum Stress-Induced Apoptosis in Gimap5-Deficient T Cells

    Get PDF
    Gimap5 (GTPase of the immunity-associated protein 5) has been linked to the regulation of T cell survival, and polymorphisms in the human GIMAP5 gene associate with autoimmune disorders. The BioBreeding diabetes-prone (BBDP) rat has a mutation in the Gimap5 gene that leads to spontaneous apoptosis of peripheral T cells by an unknown mechanism. Because Gimap5 localizes to the endoplasmic reticulum (ER), we hypothesized that absence of functional Gimap5 protein initiates T cell death through disruptions in ER homeostasis. We observed increases in ER stress-associated chaperones in T cells but not thymocytes or B cells from Gimap5−/− BBDP rats. We then discovered that ER stress-induced apoptotic signaling through C/EBP-homologous protein (CHOP) occurs in Gimap5−/− T cells. Knockdown of CHOP by siRNA protected Gimap5−/− T cells from ER stress-induced apoptosis, thereby identifying a role for this cellular pathway in the T cell lymphopenia of the BBDP rat. These findings indicate a direct relationship between Gimap5 and the maintenance of ER homeostasis in the survival of T cells

    Regulation of medullary thymic epithelial cell differentiation and function by the signaling protein Sin

    Get PDF
    Medullary thymic epithelial cells (mTECs) play an important role in T cell tolerance and prevention of autoimmunity. Mice deficient in expression of the signaling protein Sin exhibit exaggerated immune responses and multitissue inflammation. Here, we show that Sin is expressed in the thymic stroma, specifically in mTECs. Sin deficiency led to thymic stroma–dependent autoimmune manifestations shown by radiation chimeras and thymic transplants in nude mice, and associated with defective mTEC-mediated elimination of thymocytes in a T cell receptor transgenic model of negative selection. Lack of Sin expression correlated with a disorganized medullary architecture and fewer functionally mature mTECs under steady–state conditions. Additionally, Sin deficiency inhibited the expansion of mTECs in response to in vivo administration of keratinocyte growth factor (KGF). These results identify Sin as a novel regulator of mTEC development and T cell tolerance, and suggest that Sin is important for homeostatic maintenance of the medullary epithelium in the adult thymus

    Coronin-1A Links Cytoskeleton Dynamics to TCRαβ-Induced Cell Signaling

    Get PDF
    Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages

    Regulatory T cells and their role in rheumatic diseases: a potential target for novel therapeutic development

    Get PDF
    Regulatory T cells have an important role in limiting immune reactions and are essential regulators of self-tolerance. Among them, CD4+CD25high regulatory T cells are the best-described subset. In this article, we summarize current knowledge on the phenotype, function, and development of CD4+CD25high regulatory T cells. We also review the literature on the role of these T cells in rheumatic diseases and discuss the potential for their use in immunotherapy

    Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation

    Get PDF
    The diversion of MHC class II-restricted thymocytes into the regulatory T (Treg) cell lineage, similarly to clonal deletion, is driven by intrathymic encounter of agonist self-antigens. Somewhat paradoxically, it thus seems that the expression of an autoreactive T cell receptor is a shared characteristic of T cells that are subject to clonal deletion and those that are diverted into the Treg cell lineage. Here, we discuss how thymocyte-intrinsic and -extrinsic determinants may specify the choice between these two fundamentally different T cell fates

    The human Vδ2<sup>+</sup> T-cell compartment comprises distinct innate-like Vγ9<sup>+</sup> and adaptive Vγ9<sup>-</sup> subsets

    Get PDF
    Vδ2+ T cells form the predominant human γδ T-cell population in peripheral blood and mediate T-cell receptor (TCR)-dependent anti-microbial and anti-Tumour immunity. Here we show that the Vδ2+ compartment comprises both innate-like and adaptive subsets. Vγ9+ Vδ2+ T cells display semi-invariant TCR repertoires, featuring public Vγ9 TCR sequences equivalent in cord and adult blood. By contrast, we also identify a separate, Vγ9- Vδ2+ T-cell subset that typically has a CD27hiCCR7+CD28+IL-7Rα+ naive-like phenotype and a diverse TCR repertoire, however in response to viral infection, undergoes clonal expansion and differentiation to a CD27loCD45RA+CX3CR1+granzymeA/B+ effector phenotype. Consistent with a function in solid tissue immunosurveillance, we detect human intrahepatic Vγ9- Vδ2+ T cells featuring dominant clonal expansions and an effector phenotype. These findings redefine human γδ T-cell subsets by delineating the Vδ2+ T-cell compartment into innate-like (Vγ9+) and adaptive (Vγ9-) subsets, which have distinct functions in microbial immunosurveillance

    Tumors induce de novo steroid biosynthesis in T cells to evade immunity

    Get PDF
    Abstract: Tumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells, defining the global gene expression identity of these steroid-producing immune cells and gene regulatory networks by using single-cell transcriptomics. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway is sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target
    • …
    corecore