40 research outputs found

    An Update of Recent Use of Aegilops Species in Wheat Breeding

    Get PDF
    Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding

    Novel molecular marker-assisted strategy for production of wheat-Leymus mollis chromosome addition lines

    Get PDF
    Developing wheat–alien chromosome introgression lines to improve bread wheat’s resistance to stresses, such as drought, salinity stress and diseases, requires reliable markers to identify and characterize the alien chromatins. Leymus mollis is a wild relative of bread wheat resistant to salinity and economically important diseases of wheat, but its genome sequence and cytological markers are not available. We devised a molecular marker-assisted strategy for L. mollis chromosome identification and applied it to produce 10 wheat–L. mollis chromosome addition lines. Using 47 L. racemosus genome polymorphic PCR markers and DArTseq genotyping, we distinguished the L. mollis chromosomes and differentiated disomic and monosomic lines by progeny test. DArTseq genotyping generated 14,530 L. mollis SNP markers and the chromosome-specific SNP markers were used to determine the homoeologous groups of L. mollis chromosomes in the addition lines. To validate the marker-based results, genomic in situ hybridization was applied to confirm the presence and cytological status of L. mollis chromosomes in the lines. This study demonstrates that adequate molecular markers allow the production and characterization of wheat–alien addition lines without in situ hybridization, which saves considerable time and effort

    Efficient anchoring of alien chromosome segments introgressed into bread wheat by new Leymus racemosus genome-based markers

    Get PDF
    Background: The tertiary gene pool of bread wheat, to which Leymus racemosus belongs, has remained underutilized due to the current limited genomic resources of the species that constitute it. Continuous enrichment of public databases with useful information regarding these species is, therefore, needed to provide insights on their genome structures and aid successful utilization of their genes to develop improved wheat cultivars for effective management of environmental stresses. Results: We generated de novo DNA and mRNA sequence information of L. racemosus and developed 110 polymorphic PCR-based markers from the data, and to complement the PCR markers, DArT-seq genotyping was applied to develop additional 9990 SNP markers. Approximately 52% of all the markers enabled us to clearly genotype 22 wheat-L. racemosus chromosome introgression lines, and L. racemosus chromosome-specific markers were highly efficient in detailed characterization of the translocation and recombination lines analyzed. A further analysis revealed remarkable transferability of the PCR markers to three other important Triticeae perennial species: L. mollis, Psathyrostachys huashanica and Elymus ciliaris, indicating their suitability for characterizing wheat-alien chromosome introgressions carrying chromosomes of these genomes. Conclusion: The efficiency of the markers in characterizing wheat-L. racemosus chromosome introgression lines proves their reliability, and their high transferability further broadens their scope of application. This is the first report on sequencing and development of markers from L. racemosus genome and the application of DArT-seq to develop markers from a perennial wild relative of wheat, marking a paradigm shift from the seeming concentration of the technology on cultivated species. Integration of these markers with appropriate cytogenetic methods would accelerate development and characterization of wheat-alien chromosome introgression lines

    Biological nitrification inhibitor-trait enhances nitrogen uptake by suppressing nitrifier activity and improves ammonium assimilation in two elite wheat varieties

    Get PDF
    Synthetic nitrification inhibitors (SNI) and biological nitrification inhibitors (BNI) are promising tools to limit nitrogen (N) pollution derived from agriculture. Modern wheat cultivars lack sufficient capacity to exude BNIs, but, fortunately, the chromosome region (Lr#n-SA) controlling BNI production in Leymus racemosus, a wild relative of wheat, was introduced into two elite wheat cultivars, ROELFS and MUNAL. Using BNI-isogenic-lines could become a cost-effective, farmer-friendly, and globally scalable technology that incentivizes more sustainable and environmentally friendly agronomic practices. We studied how BNI-trait improves N-uptake, and N-use, both with ammonium and nitrate fertilization, analysing representative indicators of soil nitrification inhibition, and plant metabolism. Synthesizing BNI molecules did not mean a metabolic cost since Control and BNI-isogenic-lines from ROELFS and MUNAL presented similar agronomic performance and plant development. In the soil, ROELFS-BNI and MUNAL-BNI plants decreased ammonia-oxidizing bacteria (AOB) abundance by 60% and 45% respectively, delaying ammonium oxidation without reducing the total abundance of bacteria or archaea. Interestingly, BNI-trait presented a synergistic effect with SNIs since made it also possible to decrease the AOA abundance. ROELFS-BNI and MUNAL-BNI plants showed a reduced leaf nitrate reductase (NR) activity as a consequence of lower soil NO3- formation and a higher amino acid content compared to BNI-trait lacking lines, indicating that the transfer of Lr#-SA was able to induce a higher capacity to assimilate ammonium. Moreover, the impact of the BNI-trait in wheat cultivars was also noticeable for nitrate fertilization, with improved N absorption, and therefore, reducing soil nitrate content.This project was funded by the Spanish Government (RTI2018-094623-B-C21 MCIU/AEI/FEDER, UE) and by the Basque Government (IT932-16; IT1560-22; 00048-ID2021-45). AB-L and LU held grants from the Basque Government (PRE-2020-2-0142 and PRE-2020-1-0127)

    Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution

    Get PDF
    Active nitrifiers and rapid nitrification are major contributing factors to nitrogen losses in global wheat production. Suppressing nitrifier activity is an effective strategy to limit N losses from agriculture. Production and release of nitrification inhibitors from plant roots is termed "biological nitrification inhibition" (BNI). Here, we report the discovery of a chromosome region that controls BNI production in "wheat grass" Leymus racemosus (Lam.) Tzvelev, located on the short arm of the "Lr#3Ns(b)" (Lr#n), which can be transferred to wheat as T3BL.3Ns(b)S (denoted Lr#n-SA), where 3BS arm of chromosome 3B of wheat was replaced by 3Ns(b)S of L. racemosus. We successfully introduced T3BL.3Ns(b)S into the wheat cultivar "Chinese Spring" (CS-Lr#n-SA, referred to as "BNI-CS"), which resulted in the doubling of its BNI capacity. T3BL.3Ns(b)S from BNI-CS was then transferred to several elite high-yielding hexaploid wheat cultivars, leading to near doubling of BNI production in "BNI-MUNAL" and "BNI-ROELFS." Laboratory incubation studies with root-zone soil from field-grown BNI-MUNAL confirmed BNI trait expression, evident from suppression of soil nitrifier activity, reduced nitrification potential, and N2O emissions. Changes in N metabolism included reductions in both leaf nitrate, nitrate reductase activity, and enhanced glutamine synthetase activity, indicating a shift toward ammonium nutrition. Nitrogen uptake from soil organic matter mineralization improved under low N conditions. Biomass production, grain yields, and N uptake were significantly higher in BNI-MUNAL across N treatments. Grain protein levels and breadmaking attributes were not negatively impacted. Wide use of BNI functions in wheat breeding may combat nitrification in high N input-intensive farming but also can improve adaptation to low N input marginal areas.We gratefully acknowledge funding support from Japanese Ministry of Agriculture, Forestry and Fisheries, CGIAR Research Program on WHEAT during the execution of the research presented in this study

    Genome-wide association study for resistance to tan spot in synthetic hexaploid wheat

    Get PDF
    Synthetic hexaploid wheat (SHW) has shown effective resistance to a diversity of diseases and insects, including tan spot, which is caused by Pyrenophora tritici-repentis, being an important foliar disease that can attack all types of wheat and several grasses. In this study, 443 SHW plants were evaluated for their resistance to tan spot under controlled environmental conditions. Additionally, a genome-wide association study was conducted by genotyping all entries with the DArTSeq technology to identify marker-trait associations for tan spot resistance. Of the 443 SHW plants, 233 showed resistant and 183 moderately resistant reactions, and only 27 were moderately susceptible or susceptible to tan spot. Durum wheat (DW) parents of the SHW showed moderately susceptible to susceptible reactions. A total of 30 significant marker-trait associations were found on chromosomes 1B (4 markers), 1D (1 marker), 2A (1 marker), 2D (2 markers), 3A (4 markers), 3D (3 markers), 4B (1 marker), 5A (4 markers), 6A (6 markers), 6B (1 marker) and 7D (3 markers). In-creased resistance in the SHW in comparison to the DW parents, along with the significant association of resistance with the A and B genome, supported the concept of activating epistasis interaction across the three wheat genomes. Candidate genes coding for F-box and cytochrome P450 proteins that play significant roles in biotic stress resistance were identified for the significant markers. The identified resistant SHW lines can be deployed in wheat breeding for tan spot resistance

    Genome-wide association study for spot blotch resistance in synthetic hexaploid wheat

    Get PDF
    Spot blotch (SB) caused by Bipolaris sorokiniana (Sacc.) Shoem is a destructive fungal disease affecting wheat and many other crops. Synthetic hexaploid wheat (SHW) offers opportunities to explore new resistance genes for SB for introgression into elite bread wheat. The objectives of our study were to evaluate a collection of 441 SHWs for resistance to SB and to identify potential new genomic regions associated with the disease. The panel exhibited high SB resistance, with 250 accessions showing resistance and 161 showing moderate resistance reactions. A genome-wide association study (GWAS) revealed a total of 41 significant marker-trait associations for resistance to SB, being located on chromosomes 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5D, 6D, 7A, and 7D; yet none of them exhibited a major phenotypic effect. In addition, a partial least squares regression was conducted to validate the marker-trait associations, and 15 markers were found to be most important for SB resistance in the panel. To our knowledge, this is the first GWAS to investigate SB resistance in SHW that identified markers and resistant SHW lines to be utilized in wheat breeding

    Biological nitrification inhibitor-trait enhances nitrogen uptake by suppressing nitrifier activity and improves ammonium assimilation in two elite wheat varieties

    Get PDF
    Synthetic nitrification inhibitors (SNI) and biological nitrification inhibitors (BNI) are promising tools to limit nitrogen (N) pollution derived from agriculture. Modern wheat cultivars lack sufficient capacity to exude BNIs, but, fortunately, the chromosome region (Lr#n-SA) controlling BNI production in Leymus racemosus, a wild relative of wheat, was introduced into two elite wheat cultivars, ROELFS and MUNAL. Using BNI-isogenic-lines could become a cost-effective, farmer-friendly, and globally scalable technology that incentivizes more sustainable and environmentally friendly agronomic practices. We studied how BNI-trait improves N-uptake, and N-use, both with ammonium and nitrate fertilization, analysing representative indicators of soil nitrification inhibition, and plant metabolism. Synthesizing BNI molecules did not mean a metabolic cost since Control and BNI-isogenic-lines from ROELFS and MUNAL presented similar agronomic performance and plant development. In the soil, ROELFS-BNI and MUNAL-BNI plants decreased ammonia-oxidizing bacteria (AOB) abundance by 60% and 45% respectively, delaying ammonium oxidation without reducing the total abundance of bacteria or archaea. Interestingly, BNI-trait presented a synergistic effect with SNIs since made it also possible to decrease the AOA abundance. ROELFS-BNI and MUNAL-BNI plants showed a reduced leaf nitrate reductase (NR) activity as a consequence of lower soil (Formula presented.) formation and a higher amino acid content compared to BNI-trait lacking lines, indicating that the transfer of Lr#-SA was able to induce a higher capacity to assimilate ammonium. Moreover, the impact of the BNI-trait in wheat cultivars was also noticeable for nitrate fertilization, with improved N absorption, and therefore, reducing soil nitrate content

    Biological nitrification inhibition (BNI) - is there potential for genetic interventions in the Triticeae

    Get PDF
    The natural ability of plants to release chemical substances from their roots that have a suppressing effect on nitrifier activity and soil nitrification, is termed ‘biological nitrification inhibition’ (BNI). Though nitrification is one of the critical processes in the nitrogen cycle, unrestricted and rapid nitrification in agricultural systems can result in major losses of nitrogen from the plant-soil system. This nitrogen loss is due to the leaching of nitrate out of the rooting zone and emission of gaseous oxides of nitrogen to the atmosphere, where it causes serious pollution problems. Using a newly developed assay system that quantifies the inhibitory activity of plant roots (i.e. BNI capacity), it has been shown that BNI capacity is widespread among crops and pastures. A tropical pasture grass, Brachiaria humidicola has been used as a model system to characterize BNI function, where it was shown that BNIs can provide sufficient inhibitory activity to suppress soil nitrification and nitrous oxide emissions. Given the wide-range of genetic diversity found among the Triticeae, and the current availability of genetic tools for moving traits/genes across members, there is great potential for introducing/improving the BNI capacity of economically important members of the Triticeae (i.e. wheat, barley and rye). This review outlines the current status of knowledge regarding the potential for genetic improvement in the BNI capacity of the Triticeae. Such approaches are critical to the development of the next-generation of crops and production systems where nitrification is biologically suppressed/regulated to reduce nitrogen leakage and protect the environment from nitrogen pollution

    Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology

    Get PDF
    Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N2O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed so that BNIenabled crop-livestock and cropping systems can rein in soil-nitrifier activity to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies
    corecore