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The natural ability of plants to release chemical substances from their roots that have a suppressing effect on

nitrifier activity and soil nitrification, is termed ‘biological nitrification inhibition’ (BNI). Though nitrifica-

tion is one of the critical processes in the nitrogen cycle, unrestricted and rapid nitrification in agricultural

systems can result in major losses of nitrogen from the plant-soil system. This nitrogen loss is due to the

leaching of nitrate out of the rooting zone and emission of gaseous oxides of nitrogen to the atmosphere,

where it causes serious pollution problems. Using a newly developed assay system that quantifies the inhib-

itory activity of plant roots (i.e. BNI capacity), it has been shown that BNI capacity is widespread among

crops and pastures. A tropical pasture grass, Brachiaria humidicola has been used as a model system to char-

acterize BNI function, where it was shown that BNIs can provide sufficient inhibitory activity to suppress

soil nitrification and nitrous oxide emissions. Given the wide-range of genetic diversity found among the

Triticeae, and the current availability of genetic tools for moving traits/genes across members, there is great

potential for introducing/improving the BNI capacity of economically important members of the Triticeae

(i.e. wheat, barley and rye). This review outlines the current status of knowledge regarding the potential for

genetic improvement in the BNI capacity of the Triticeae. Such approaches are critical to the development

of the next-generation of crops and production systems where nitrification is biologically suppressed/regu-

lated to reduce nitrogen leakage and protect the environment from nitrogen pollution
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Introduction

The biological oxidation of ammonia to nitrate is termed

“nitrification”, and is carried out by two groups of chemo-

lithotrophic bacteria (Nitrosomonas spp. and Nitrobacter

spp.), which are ubiquitous components of the soil microbial

population (Norton et al. 2002). Nitrification and denitrifica-

tion are critical processes in the removal of N from organic

wastes where they facilitate N cycling in organic-based

waste systems. However, in agricultural systems, rapid and

unchecked nitrification results in inefficient N use by crops,

leading to N leakage and environmental pollution (Clark

1962, Subbarao et al. 2006a, 2009a, Schlesinger 2009).

Most plants have the ability to utilize either NH4
+ or NO3

− as

their N source (Haynes and Goh 1978). Therefore, minimiz-

ing the role of nitrification in the N cycle in agricultural sys-

tems should not limit nitrogen availability to plants and is

desirable as it reduces the amount of nitrogen leakage from

these systems.

Need for nitrification suppression?

Nearly 90% of worldwide application of N-fertilizer is in

the form of NH4
+ that is rapidly converted to NO3

− (within

days or weeks) by nitrifier activity (Sahrawat 1980, Mason

1992, Strong and Cooper 1992). Being a cation, NH4
+ in the

soil is held by electrostatic forces to the negatively charged
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clay surfaces and the functional groups of soil organic mat-

ter (SOM) (Amberger 1993). This binding is sufficiently

strong to restrict N loss by leaching (Amberger 1993). In

contrast, NO3
− with its negative charge, does not bind

strongly to the soil, and thus it is mobile and liable to being

leached out of the root-zone (Amberger 1993). Several hetero-

trophic soil bacteria denitrify NO3
− (i.e. convert NO3

− into

gaseous N forms: N2O, NO, N2) under anaerobic or partially

anaerobic conditions (i.e. this often coincides with heavy

rainfall or irrigation and/or improper drainage) (Bremner

and Blackmer 1978, Mosier et al. 1996). Losses such as

these reduce the effectiveness of N fertilization and presents

serious pollution problems (Clark 1962, Jarvis 1996).

The rapid conversion of NH4
+ to NO3

− in soil results in

the inefficient use of both soil N and applied N fertilizer.

Soil organic N can also go through the nitrification process,

making it subject to similar losses of N (Dinnes et al. 2002,

Subbarao et al. 2006a, 2009a, 2009b). Nitrification is the

single most important process in the N cycle that leads di-

rectly to N losses (Clark 1962, Barker and Mills 1980).

Moreover, the assimilation of NO3
− by plants requires more

metabolic energy than the assimilation of NH4
+ (20 moles of

ATP per mole of NO3
− vs. 5 moles of ATP per mole of NH4

+)

(Salsac et al. 1987) making the use of NH4
+ by plants more

efficient. In addition, the assimilation of NO3
−, not NH4

+, re-

sults in the direct emission of N2O from crop canopies re-

ducing further its N-use efficiency (Smart and Bloom 2001).

Keeping N in the NH4
+ form thus has a large number of ad-

vantages for improving N uptake in agricultural systems.

Many of these advantages have been demonstrated using

chemical nitrification inhibitors (Slangen and Kerkhoff

1984, Subbarao et al. 2006a).

The movement towards high-nitrifying systems

Nitrification plays only a relatively minor role in many

natural climax communities as only a small portion of the to-

tal N may go through the nitrification process in the nitrogen

cycle. In contrast, nitrification plays a dominant role in most

agricultural systems (Vitousek et al. 1997, Nasholm et al.

1998, Smolander et al. 1998, Subbarao et al. 2006a). Mod-

ern agricultural systems rely heavily on large inputs of exter-

nal N (through inorganic N fertilizer) to maintain high pro-

ductivity as naturally fixed N is seldom adequate (Dinnes et

al. 2002). In addition, several changes that took place during

the 20th century as part of modernizing, led to rapid nitrifica-

tion in agricultural systems (Rabalais et al. 1996, Poudel et

al. 2002). These include a) Reduced use of diversified crop

rotations, b) Separation of crop production systems from an-

imal enterprises, c) Increased soil tillage, d) Irrigation and

drainage of agricultural fields and e) Increased use of N fer-

tilizers.

Current production systems that depend heavily on indus-

trially produced inorganic N have replaced earlier produc-

tion systems that relied primarily on legumes and/or animals

for N inputs (Dinnes et al. 2002). In addition, the separation

of crop and animal production enterprises has led to an even

greater dependence on inorganic N fertilizers (i.e. bypassing

agricultural systems for organic matter recycling), and has

resulted in the reduction of SOM levels worldwide (Tiessen

et al. 1994). This heavy dependence on mineral fertilizers

has also contributed to the stimulation of nitrifier activity and

the subsequent highly-nitrifying soil environments (McGill

et al. 1981, Poudel et al. 2002, Lal 2003, Bellamy et al. 2005).

This coupled with the installation of sub-surface drainage

systems in many developed parts of the world has resulted in

the acceleration of NO3
− leaching, leading to further reduc-

tions in the efficiency of N-cycling in agricultural systems

(Clark 1962, Pratt and Adriano 1973, Dinnes et al. 2002).

Consequences of high-nitrifying environments on global

nitrogen-cycle

The green revolution which was largely founded on the

application of industrially fixed nitrogen to semi-dwarf rice

and wheat varieties, has doubled global food grain produc-

tion and reduced food shortages, but at a high environmental

cost (Tilman et al. 2001, Hungate et al. 2003). The rapid and

unrestricted nitrification found in modern production sys-

tems, results in the loss of nearly 70% of N-fertilizer inputs

to agricultural systems. This amounts to a direct economic

loss of nearly US$ 17 billion worldwide annually from cere-

al production systems alone (Raun and Johnson 1999,

Subbarao et al. 2006a). In addition, there are countless

other costs related to environmental problems that are not

yet addressed (Viets 1975, Ryden et al. 1984, Tilman et al.

2001, Schlesinger 2009).

Nitrogen fertilizer use is expected to triple by 2050 from

the current 100 Tg N yr−1 in agricultural systems. This will

further accelerate nitrogen leakage from production systems,

placing a much heavier pollution loads on the environment

(Vitousek et al. 1997, Tilman et al. 2001, IFA 2005,

Schlesinger 2009). Leaching of NO3
− from root zones with

the subsequent NO3
− contamination of ground water and sur-

face waters is one of the major environmental concerns asso-

ciated with nitrification (Scheperts et al. 1991, Tilman et al.

2001, Schlesinger 2009). Several studies have shown a close

linkage between N-fertilizer usage, increased groundwater

NO3
− levels, human health and environmental problems

(Broadbent and Rauschkolb 1977, Vitousek et al. 1997,

Subbarao et al. 2006a, Schlesinger 2009). Nitrogen lost due

to NO3
− leaching from agricultural systems is currently esti-

mated at 61.5 Tg N yr−1 (Schlesinger 2009).

In addition to the pollution of terrestrial and marine water

bodies, agricultural systems contribute nearly 30% of the

current nitric oxide (NO) and 70% of the nitrous oxide

(N2O) emissions to the atmosphere (Fig. 1) (Bremner and

Blackmer 1978, Smith et al. 1997, Hofstra and Bouwman

2005). In the atmosphere, N2O acts as a powerful green-

house gas having a global warming potential 300 times that

of CO2 (Kroeze 1994, IPCC 2001). In addition, the NOs that

reach the stratosphere can damage the protective ozone layer

(Crutzen and Ehhalt 1977). During plant growth, assimila-

tion of NO3
− rather than NH4

+ results in N2O emissions
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directly from crop canopies (Smart and Bloom 2001,

Nishimura et al. 2005). Current estimations indicate that

nearly 17 Tg N yr−1 is emitted to the atmosphere as N2O

(Schlesinger 2009). By 2100, the global N2O emissions are

projected to be four times greater than current emissions,

due largely to increases in N-fertilizer use (Hofstra and

Bouwman 2005).

Options for the control of nitrification in agricultural sys-

tems

A number of N-management strategies that utilize rate

and/or timing of fertilizer applications such as “fall” vs.

“spring”, basal vs. split applications, banding of N fertilizers

vs. broadcasting, deep placement of N fertilizer vs. surface

application, point-injection placement of solutions, and foli-

ar applications of urea have been used to enhance the use ef-

ficiency of applied N. Strategies have also been developed to

synchronize fertilizer application with crop N requirements

to facilitate rapid uptake, reducing N residence time in soil

which help limit losses by denitrification and/or NO3
−-

leaching (Newbould 1989, Dinnes et al. 2002). Many such

agronomic strategies have limitations, as they are associated

with additional labor costs (for split applications) and other

practical difficulties (Dinnes et al. 2002).

Synthetic Chemical Inhibitors: Nitrification inhibitors

(NI) are compounds that delay bacterial oxidation of NH4
+

by depressing activities of soil nitrifiers. In theory, reducing

nitrification under conditions where there is a high risk of N

loss from NO3
− leaching or denitrification, should improve

nitrogen use efficiency (NUE) (Hughes and Welch 1970,

Hendrickson et al. 1978, Ranney 1978, Bremner et al. 1981,

Rodgers 1986). Minimizing the rate of nitrification until the

primary crop is in its log phase of growth will give the plants

a better opportunity to absorb N while it still remains in the

root zone. In addition, rapidly growing crops will absorb

more water from precipitation/irrigation, thus lowering the

risk of NO3
− being leached out of the root zone (Dinnes et al.

2002, Liao et al. 2004).

Numerous compounds have been proposed and patented

as nitrification inhibitors (Malzer 1979, McCarty 1999,

Subbarao et al. 2006a). Only a few nitrification inhibitors,

nitrapyrin, DCD (dicyandiamide), and DMPP (3,4-dimethyl

Fig. 1. Schematic representation where biological nitrification inhibition (BNI) interfaces with the nitrogen cycle. BNI’s produced by the root in-

hibits the process that converts ammonium to nitrate. In ecosystems with large amounts of BNI, such as Brachiaria pastures, the flow of nitrogen

from ammonium to nitrate is restricted and ammonium tends to remain or build up in the soil/root system. In systems with little or no BNI, such

as modern agricultural systems, nitrification tends to occur at a rapid rate and ammonium is rapidly converted to nitrate that is very susceptible to

be lost from the soil/root system. [adapted and redrawn from Subbarao et al. in press).
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pyrazole phosphate) have been thoroughly evaluated under

field conditions (Goring 1962, Guthrie and Bomke 1980,

Weiske et al. 2001, Zerulla et al. 2001, Di and Cameron

2002, Subbarao et al. 2006a). However, these synthetic

chemical inhibitors have not been widely adopted by pro-

duction agriculture as they are often not cost-effective. In

addition, there are concerns over their lack of consistent per-

formance across diverse agro-climatic and soil environ-

ments (McCall and Swann 1978, Gomes and Loynachan

1984, Subbarao et al. 2006a).

Slow and controlled-release nitrogen fertilizers: Slow-

and controlled-release (SCR) fertilizers are forms of N fertil-

izer that extend the time of N availability for plant uptake

(Shaviv and Mikkelsen 1993, AAPFCO 1997). SCR fertiliz-

ers release N into the soil solution at a reduced rate, which is

achieved through special chemical and physical characteris-

tics. SCR fertilizers are produced when conventional soluble

fertilizer materials are encapsulated or given a protective

coating (water-insoluble, semi-permeable or impermeable

with pores), which controls water entry and rate of dissolu-

tion, thus nutrient release and its availability are more syn-

chronized with the plant’s requirements (Fujita et al. 1992).

Because of the slow release of N to the soil, the availability

of NH4
+ to the nitrifiers is limited, thus N losses during and

following nitrification can be reduced. Field evaluation of

polymer-coated urea (POCU) indicates that N losses associ-

ated with nitrification can be substantially reduced, along

with concurrent improvements in N recovery (Shoji and

Kanno 1994). Because of the reduced N losses, the crop N

application rates for POCU is about 40% less than the rec-

ommended level for normal N fertilizers (Balcom et al.

2003, Zvomuya et al. 2003). However, POCU is 4 to 8 times

more expensive than normal urea, thus their adoption in pro-

duction agriculture is limited (Detrick 1996).

Observations on interaction between plants and nitrification

Several studies have indicated that soil nitrification po-

tential differed in different ecosystems. These differences in

nitrification potential are not due to soil physical and chem-

ical characteristics (Clark et al. 1960, Robertson 1982a,

1982b, Montagnini et al. 1989, Northup et al. 1995, Schimel

et al. 1998, Hattenschwiler and Vitousek 2000, Lata et al.

2004, Lovett et al. 2004). Often ammonium levels exceeded

nitrate concentrations by a factor of ten, indicating that am-

monium was not limiting nitrification. Influence of vegeta-

tion in inhibiting nitrification was often suspected, but not

proven (Lyon et al. 1923, Donaldson and Henderson 1990a,

1990b, Steltzer and Bowman 1998, Lewis and Likens 2000,

Christ et al. 2002, Lovett et al. 2004). Certain forest trees

(such as Arbutus unedo) are reported to suppress soil nitrifi-

cation and nitrous oxide emissions, and it is hypothesized to

be due to biological molecules (i.e. allelochemicals such as

gallocatechin and catechin) added from the litter (leaves and

roots) to the soil (Castaldi et al. 2009). Several earlier re-

searchers observed a lack of or slow rate of nitrification in

soils collected from certain tropical pasture grasses and for-

est soils; this led to the hypothesis that plant roots may influ-

ence nitrification (Jones et al. 1994, Laverman et al. 2000,

Knops et al. 2002, Ishikawa et al. 2003, Subbarao et al.

2006a, Fillery 2007).

Mature grassland ecosystems are suspected of inhibiting

soil nitrification (Boughey et al. 1964, Lata et al. 1999). Nat-

ural grasslands dominated by Andropogon spp., Brachiaria

humidicola and Hyparrhenia diplandra have most of their

inorganic soil N in the NH4
+ form, a trait which is considered

to be an indicator of the ecosystem’s maturity (Meiklejohn

1968, Lodhi 1979, Sylvester-Bradley et al. 1988, Lata et al.

1999, Subbarao et al. 2006a, Castaldi et al. 2009). There

have been a number of attempts to test this hypothesis, but

they have achieved relatively little success due to the lack of

suitable methodology (Robinson 1963, Munro 1966a,

1966b, Moore and Waid 1971, Purchase 1974, Rice and

Pancholy 1974).

Unlike most agricultural systems, certain mature natural

ecosystems are known to retain large amounts of added N

despite little or no biomass increment, largely through incor-

poration of N into soil organic matter, but the underlying

mechanisms are not well understood (Magill et al. 2000).

The hypothesis that plants can suppress or stimulate nitrifi-

cation has been debated for many years due to a lack of con-

vincing evidence from in situ studies (Stienstra et al. 1994,

Lata et al. 1999, 2004, Lovett et al. 2004, Fillery 2007). Re-

cently, using two ecotypes of the tropical grass Hyperrhenia

diplandra (high-nitrification ecotype and low-nitrification

ecotype), it was demonstrated that nitrification can be stim-

ulated or suppressed depending on the ecotype (Lata et al.

2004). Moreover, plant species that dominate some of the

climax ecosystems with low nitrification were shown to

produce organic compounds that inhibit nitrifier activity

(Basaraba 1964, Likens et al. 1969, Jordan et al. 1979,

Donaldson and Henderson 1990a, 1990b, Courtney et al.

1991). These inhibitory compounds when added to the soil

from roots through exudation suppressed nitrification in the

rhizosphere (Jordan et al. 1979). The degree of nitrification

inhibition appears to increase with the ecosystem’s maturity

with little or no nitrification occurring in some mature eco-

systems (Rice and Pancholy 1972, 1973, 1974, Lodhi 1982,

Thibault et al. 1982, Baldwin et al. 1983, Cooper 1986,

Howard and Howard 1991, White 1991, Northup et al. 1995,

Schimel et al. 1996, Paavolainen et al. 1998, Ste Marie and

Pare 1999, Erickson et al. 2000).

Since NH4
+ assimilation by plants requires four times less

metabolic energy than NO3
−, it is hypothesized that inhibi-

tion of nitrification could be an ecological driving force for

the development of low NO3
− climax ecosystems (Rice and

Pancholy 1972, Salsac et al. 1987, Lata et al. 2004). Among

the inhibitory compounds proposed, phenolics, alkaloids,

isothiocyanates, and terpenoids have received some atten-

tion (Lewis and Papavizas 1970, Zucker 1983, Putnam

1988, Choesin and Boerner 1991, Bending and Lincoln,

2000, Bertin et al. 2003, Gopalakrishnan et al. 2007,

Subbarao et al. 2008, Zakir et al. 2008).
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Biological Nitrification Inhibition (BNI)

BNI concept

The ability of certain plant species to release organic mol-

ecules/compounds from their roots that specifically inhibit

the function of nitrifying bacteria in soil, is a phenomenon

termed “biological nitrification inhibition” (BNI) (Subbarao

et al. 2006a, 2006b, 2009a, 2009b). A schematic presenta-

tion of the BNI concept along with various processes of the

soil N-cycle that are impacted is presented in Fig. 1. As nitri-

fication can be the most important process that determines

N-cycling efficiency (i.e. the proportion of N that stays in

the ecosystem along a complete recycling loop) (Fig. 1),

controlling nitrification through suppression will minimize

various processes leading to N leakage (i.e. NO3
− leaching

and gaseous nitrous oxide emissions), and facilitate N flow

through the NH4
+ assimilation pathways (Fig. 1). Unlike

NO3
−, NH4

+ is relatively immobile in the soil, so it can have

a longer residence time in the root zone facilitating its up-

take. The assimilation of NH4
+ also requires much less

metabolic energy than NO3
−, leading to a higher NUE in agri-

cultural systems.

Nitrogen-use efficiency (NUEagronomic = dry matter pro-

duced per unit of applied N) is a function of both intrinsic

N-use efficiency (NUEintrinsic) and total N uptake. Intrinsic

N-use efficiency (NUEintrinsic i.e. dry matter produced per unit

N uptake) of a plant is a physiologically conservative func-

tion (Glass 2003), thus difficult to manipulate genetically.

Improvements in NUEagronomic mostly come through im-

provements in crop N uptake (Finzi et al. 2007). As de-

scribed earlier, BNI function can improve N uptake due to

its inhibitory effect on nitrification, which can positively in-

fluence NUEagronomic in production systems (Subbarao et al.

2006a). Recent modeling studies indicate that by inhibiting

nitrification, nitrogen recovery, and hence nitrogen-use effi-

ciency can be improved substantially. Primary productivity

was positively impacted in tropical savannas dominated by

native African grasses, Hyparrhenia diplandra that appears

to have a great ability to suppress nitrification (Boudsocq et

al. 2009).

Methodology to detect biological nitrification inhibitors

(BNIs) in plant-soil systems

A bioluminescence assay using a recombinant strain of

Nitrosomonas europaea was adopted to detect nitrification

inhibitors released from plant roots (hereafter referred to as

BNI activity) (Iizumi et al. 1998, Subbarao et al. 2006b).

The recombinant strain of N. europaea carries an expression

vector for the Vibrio harveyi luxAB genes, and produces a dis-

tinct two-peak luminescence pattern during a 30-s analysis

period (Subbarao et al. 2006b). The functional relationship

between bioluminescence emission and nitrite production

in the assay has been demonstrated to be linear using a

synthetic nitrification inhibitor, allylthiourea (AT) (Subbarao

et al. 2006b). The inhibition caused by 0.22 mM AT in

this assay, about 80% inhibition in bioluminescence and

NO2
− production, is defined as 1 ATU (allylthiourea unit)

(Subbarao et al. 2006b). Using the response to a concentra-

tion gradient of AT (i.e. dose-response standard curve), the

inhibitory effect of test samples (for e.g. root exudates or

plant or soil extracts) can be expressed and compared in

ATU units. With these methodological tools, it is now possi-

ble to determine and compare the BNI capacity of crops or

pastures (Subbarao et al. 2006b).

Distribution of BNI function in plants

An evaluation of tropical pastures, cereal crops and le-

gumes indicated that there is wide-spread BNI capacity

among plant species (Subbarao et al. 2007b). The greatest

BNI capacity was found in Brachiaria spp.. BNI capacity

varied widely among plant spp.; there were substantial inter-

specific differences among tropical pasture grasses. Pastures

of B. humidicola and B. decumbens that are highly adapted

to the low-N production environments of the South Ameri-

can savannas (Rao et al. 1996), showed the greatest BNI ca-

pacity (Subbarao et al. 2007b). In contrast, P. maximum,

which is adapted to high N input showed the least BNI ca-

pacity (Rao et al. 1996, Subbarao et al. 2007b). Among the

cereal crops evaluated, only sorghum showed significant

BNI capacity (Subbarao et al. 2007b, Zakir et al. 2008);

while other important cereal crops such as rice, maize and

the Triticeae, including wheat and barley, lacked detectable

BNI capacity (Subbarao et al. 2007b).

Inhibition of nitrification (i.e. BNI capacity in roots) is

likely to be part of an adaptation mechanism to conserve and

use N efficiently in natural systems having N-limiting envi-

ronments (Lata et al. 2004, Subbarao et al. 2006a). Thus N

stress could be one of the dominant forces driving the evolu-

tion of BNI function (Rice and Pancholy 1972, Lata et al.

2004). It is not surprising then that legumes did not show ap-

preciable BNI capacity. For legumes, it is likely that the BNI

attribute would have little or no adaptive value due to their

ability to fix N symbiotically. Conserving N may not offer

much of an advantage for legumes as it may attract non-

legumes as competitors.

In fact, our preliminary studies indicate that soybean root

exudates stimulate nitrification in laboratory soil incubation

studies (Subbarao et al. 2007c). Several forest systems

dominated by leguminous trees (Acacia mangium and

A. auriculaeformis) have soils that either had no influence

or stimulated nitrification. In contrast, forests dominated by

non-legume trees such as Eucalyptus citriodora, Pinus elliotii,

and Schima superba, have low nitrification rates in their

soils (Li et al. 2001). Importantly, recent studies indicate

that a wild relative of wheat, Leymus racemosus, has BNI

capacity similar to that of Brachiaria spp., with BNI-activity

release rates ranging from 20 to 30 ATU g−1 root dry wt d−1

(Subbarao et al. 2007e).

Regulatory requirements of the BNI function

Synthesis and release of BNIs is a regulated attribute in

B. humidicola (Subbarao et al. 2007a). To some extent, the
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release of BNIs is related to plant N status (Subbarao et al.

2006b). In particular the form of N applied (i.e. NH4
+

vs. NO3
−) has a major influence on the synthesis and release

of BNIs from roots in B. humidicola and in wild wheat,

L. racemosus (Subbarao et al. 2007a, 2007e). Plants grown

with NO3
− as their N source did not release BNIs from roots

(Subbarao et al. 2007a). The release of BNIs from roots was

observed only from plants grown with NH4
+ as their N source

(Subbarao et al. 2007a, 2007e, 2009a, 2009b). Further, even

for plants grown with NH4
+, the presence of NH4

+ in the

rhizosphere is critical for the synthesis and release of BNIs

from their roots (Subbarao et al. 2007a, 2007e). Though

high levels of BNIs were detected in the root tissues of NH4
+

grown plants, their release was observed only when their

roots were exposed to NH4
+ (Subbarao et al. 2007a, 2007e,

2009a, 2009b).

Recent reports characterize the plant’s regulatory role in

the expression of BNI in B. humidicola. The presence of

NH4
+ and the physiological consequences associated with its

uptake (such as acidification of the rhizosphere) on the

rhizosphere appears to play an important role in the synthe-

sis and release of BNIs from roots (Subbarao et al. 2007a,

2009a, 2009b). The availability of NH4
+ in the soil from ei-

ther soil organic N mineralization or through the application

of N-fertilizers such as urea or ammonium sulfate can en-

hance nitrifiers’ activity and stimulate growth (Robinson

1963, Woldendorp and Laanbroek 1989). The regulatory

role of NH4
+ in the synthesis and release of BNIs suggests its

possible adaptive role in protecting NH4
+ from nitrifiers, a

key factor for the successful evolution of BNI capacity as an

adaptation mechanism (Subbarao et al. 2007a).

Stability of BNIs in soil systems

The BNI activity of roots was determined based on the in-

hibitory effect of root exudates (i.e. compounds released

from roots) on Nitrosomonas biological activity, during a

30-min incubation period in the assay. However, to have a

stable inhibitory effect on soil nitrification, the inhibitory

compounds (i.e. BNIs) released from the roots must be sta-

ble in the soil environment for several weeks. This was

confirmed by adding BNIs to the soil along with NH4
+ as

the N source to determine their inhibitory effects on soil

nitrification over a 60 d period (Subbarao et al. 2006b,

Gopalakrishnan et al. 2009).

These results indicated that BNIs released from

B. humidicola roots are effective in inhibiting nitrification

for at least 60 days (Subbarao et al. 2006b). Also, it is im-

portant to note that the inhibitory compounds in the soil need

to reach a threshold level of about 5 ATU g−1 soil before the

inhibitory effect becomes evident with a near total suppres-

sion of nitrification at about 20 ATU g−1 soil (Subbarao et al.

2006b). Subsequent studies indicated that BNIs partially

lose their effectiveness in the soil after 80 days, and that the

inhibitory effect is completely lost after 100 days (Subbarao

et al. 2006b).

Molecules with BNI potential

Plants are known to release a wide range of substances

that have biological activity (Bremner and McCarty 1988,

Bending and Lincoln 2000, Subbarao et al. 2006a,

Raaijmakers et al. 2009). These include molecules released

from plant roots that belong to phenolic, fatty acid, isothio-

cyanate, and terpene groups (Choesin and Boerner 1991,

Bennett and Wallsgrove 1994, Langenheim 1994, Bending

and Lincoln 2000, Kraus et al. 2003, Subbarao et al. 2006a,

2009a, 2009b). The compounds responsible for BNI were

not elucidated until recently despite the phenomenon having

been speculated to occur since the early 1960s based on em-

pirical field studies (Subbarao et al. 2006a). Recently, sever-

al nitrification inhibitors belonging to different chemical

classes were successfully isolated and identified from plant

tissues or root exudates using bioassay-guided purification

with a recombinant Nitrosomonas europaea assay (Fig. 2)

(Subbarao et al. 2006b, Gopalakrishnan et al. 2007,

Subbarao et al. 2008, Zakir et al. 2008).

BNI compounds in the aerial parts of B. humidicola were

identified as the unsaturated free fatty acids, linoleic acid

and α-linolenic acid (Subbarao et al. 2008). They are rela-

tively weak inhibitors with IC50 values of 3 × 10−5
 M; while

the IC50 value of synthetic nitrification inhibitor 1-allyl-2-

thiourea is 1 × 10−7
 M. However, other free fatty acids having

different chain lengths or numbers of double bonds, e.g.

stearic, oleic, arachidonic and cis-vaccenic acid did not

show inhibitory activity, indicating that there are specific

chemical structural requirements to affect Nitrosomonas

function (Subbarao et al. 2008). BNI compounds linoleic

acid and α-linolenic acid may have the size and shape suit-

able to be an inhibitor. These two BNI compounds possibly

inhibit both ammonia monooxygenase (AMO) and hydroxy-

lamine oxidoreductase (HAO) enzymatic pathways, which

catalyze essential reactions of the ammonia oxidation pro-

cess in N. europaea (Subbarao et al. 2008). When linoleic

acid and α-linolenic acid were mixed with soil, the mixture

suppressed nitrification for several months (Subbarao et al.

2008). The BNIs released (determined as BNI activity) from

roots of B. humidicola and Leymus racemosus (wild wheat)

appears to block both AMO and HAO enzymatic pathways

with equal effectiveness (Subbarao et al. 2007a, 2007e)

(Fig. 3). In addition, BNIs could also disrupt the electron

transfer pathway from HAO to ubiquinone and cytochrome

(which needs to be maintained to generate reducing power,

i.e. NADPH), that is critical to the metabolic functions of

Nitrosomonas (Fig. 3), thus requires further research for

clarity on this issue (Subbarao et al. 2009b). This is in

contrast to synthetic nitrification inhibitors AT, nitrapyrin

and DCD, which inhibit nitrification by suppressing only the

AMO enzymatic pathway in Nitrosomonas (Subbarao et al.

2007a, 2007e) (Fig. 3).

In the root tissue of B. humidicola, two phenyl-

propanoids, methyl-p-coumarate and methyl ferulate

(Gopalakrishnan et al. 2007) were found to be the major

BNI compounds, in place of the two free fatty acids found
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in the aerial part of the plant. The IC50 values for methyl-p-

coumarate and methyl ferulate are 2 × 10−5 and 4 × 10−6
 M,

respectively (Gopalakrishnan et al. 2007). The correspond-

ing free acids namely p-coumaric acid and ferulic acid, which

are involved in lignin biosynthesis, showed no inhibitory ac-

tivity at concentrations less than 1 × 10−2
 M (Gopalakrishnan

et al. 2007). It is expected that B. humidicola releases

methyl-p-coumarate and methyl ferulate, or simple metabolites

derived from these BNI compounds, into the soil environ-

ment via degradation of root tissues in these pasture systems

(Gopalakrishnan et al. 2007). However, these BNI compounds

mentioned above (Fig. 2) were not detected in root exudates;

thus BNIs released from roots are different from those iso-

lated from the shoot and root tissues (Gopalakrishnan et al.

2007, Subbarao et al. 2008). It is expected that a major por-

tion of the inhibitory effect (i.e. BNIs added to the soil) in

Brachiaria systems come from root release (i.e. exudates);

however, these BNIs need to be isolated and their chemical

identities are yet to be determined (Subbarao et al. 2007a).

From the root exudates of hydroponically-grown Sorghum

bicolor, a BNI compound was isolated and identified as the

phenylpropanoid, methyl 3-(4-hydroxyphenyl) propionate

[MHPP]. The IC50 value for MHPP is approximately 9 ×

10−6
 M, which is similar to those of BNI compounds methyl-

p-coumarate and methyl ferulate (Zakir et al. 2008).

Field studies showing BNI activity

To demonstrate BNI function under field conditions,

field plots planted with B. humidicola (a high-BNI capacity

species), Panicum maximum (a low-BNI capacity species)

and soybean (a species that lacks BNI capacity) were fer-

tilized with ammonium sulfate (200 kg N ha−1 y−1) and

monitored monthly for soil nitrification potential and N2O

Fig. 2. Chemical structures of recently reported BNI compounds from

plants

Fig. 3. Mode of inhibitory action by synthetic nitrification inhibitors and BNIs released from roots of B. humidicola (based on Iizumi et al. 1998,

Subbarao et al. 2007a).
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emissions for three years (Subbarao et al. 2007d). Nitrous

oxide (N2O) emissions were suppressed in the field planted

with B. humidicola (Subbarao et al. 2007d, 2009b). In con-

trast, soybean that lacked BNI capacity had N2O emissions

nearly 10-fold higher than the B. humidicola plots (Subbarao

et al. 2007d, 2009b).

Similarly, soil nitrification rates from field -plots of

B. humidicola were substantially lower than those of soy-

bean or P. maximum (Subbarao et al. 2007d, 2009b). Further,

laboratory soil incubation studies provided direct evidence

that adding soybean root exudate to the soil stimulated N2O

emissions. In contrast, root exudate from B. humidicola sup-

pressed soil N2O emissions (Subbarao et al. 2007c). Soil in-

cubation studies showed that high-BNI capacity genotypes

in 10-year old B. humidicola fields suppressed soil nitrifica-

tion more effectively (based on laboratory soil incubation

studies) and had nearly five times less soil NO3
− (after the

60-d incubation period) than low-BNI capacity genotypes

(Subbarao et al. 2007d). These results indicate that plants

can suppress or stimulate nitrification, a biological attribute

that could be exploited to control nitrification in agricultural

systems (Subbarao et al. 2007d, 2009b).

Potential for genetic interventions to improve BNI

capacity in the Triticeae

Members of the Triticeae are known to release a number of

different biological molecules from their roots such as phe-

nolic acids (p-hydroxybenzoic, syringic, vanillic, ferulic, p-

coumaric, chlorogenic, caffeic, p-hydroxybenzaldehyde,

gallic and protocatechuic), hydroxamic acids (BOA,

DIBOA, DIMBOA, AZOB, DIMBOA-glc, MBOA and Cl-

MBOA), alkaloids (hordenine and gramine) and quinones

(sorgoleone, and p-benzoquinones). These biological mole-

cules have a diverse range of chemical structures and have

been identified from both cultivated and wild Triticeae

(Bennett and Wallsgrove 1994). These compounds, when re-

leased from roots, can play a great variety of roles in the

rhizosphere, such as nutrient acquisition, pest and pathogen

defense, and most likely other unknown functions. Some of

these compounds likely have BNI properties that should be

evaluated and characterized. This information could be crit-

ical to the development of genetic strategies to introduce

economically and environmentally important levels of BNI

capacity to the roots of economically important Triticeae,

such as wheat, barley and rye.

The existence of genotypic variability is a prerequisite for

the genetic improvement of any trait by a breeding program.

Significant genotypic variability exists for the BNI capacity

in roots of B. humidicola (Table 1). Specific BNI activities

(ATU g−1 root dry wt d-1) ranged from 7.1 to 46.3 ATU indi-

cating that there may be potential for genetic improvement

of BNI capacity by selection and intermating. In cultivated

wheat, preliminary evaluations suggest a lack of significant

BNI capacity (Fig. 4) (Subbarao et al. 2007e). Recent re-

sults, however, indicate that the roots of a wild relative of

wheat, L. racemosus, possess a high-BNI capacity (Fig. 4).

Inhibitors released from roots of this wild wheat have been

shown to effectively suppress soil nitrification for more than

60 days (Subbarao et al. 2007e). Using chromosome-

addition lines derived from the hybridization of this wild rel-

ative (L. racemosus) with cultivated wheat, it was shown that

genes conferring high-BNI capacity are located in chromo-

some Lr#n, and can be successfully introduced into and ex-

pressed in cultivated wheat (Fig. 5) (Subbarao et al. 2007e).

These results indicate there is great potential for developing

the next-generation of wheat cultivars with root BNI-

capacity sufficient to suppress nitrification in wheat produc-

tion systems. It needs to be emphasized however, that during

this study only one accession of L. racemosus was evaluated

and characterized for BNI capacity. Available acessions of

L. racemosus are yet to be characterized for BNI-capacity,

as some may well be superior for this trait compared to the

accession evaluated. Further, several other wheat wild

Table 1. Genotypic variation in BNI released from roots of

B. humidicola accessions. Four plants per pot were grown for 180 d

before collecting root exudate (Subbarao et al. 2007b)

Serial 

No.
Accession No.

Total BNI released from 

four plants (ATU d−1)

Specific BNI (ATU

g−1 root dry wt. d−1)

1 CIAT 26159 126.2 46.3

2 CIAT 26427 118.5 31.6

3 CIAT 26430 151.0 24.1

4 CIAT 679 68.8 17.5

5 CIAT 26438 93.5 6.5

6 CIAT 26149 22.3 7.1

7 CIAT 682 53.4 7.5

8 P. maximum 0.6 0.1

LSD (0.05) 21.7 6.0

Fig. 4. BNIs (biological nitrification inhibitors) released from roots

(i.e. root exudates) of two cultivars of wheat and their wild relative

L. racemosus; plants were grown with either NH4
+ or NO3

− as the

nitrogen source; root exudate was collected from intact roots in aerated

distilled water over a 24 h period; vertical bars represent Fisher

LSD (P<0.001) for the interaction term (N source × species) (based on

Subbarao et al. 2007e)
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relatives/progenitors in the Triticeae, need to be evaluated

systematically and their BNI-capacity characterized to devel-

op a more thorough understanding of the BNI trait/function

and to identify multiple sources of high-BNI capacity for

wheat improvement. In addition, evaluation of several map-

ping populations generated using Leymus sp. could provide

valuable information that is expected to prove helpful in de-

veloping genetic strategies for improving BNI capacity of

cultivated wheat. For example, the available mapping popula-

tion from the cross L. cinereus × L. triticoides (Wu et al. 2003,

Bushman et al. 2008), could provide a useful system for ge-

netic research on the BNI trait.

Improvement of BNI capacity in wheat and barley

Demonstrating that the high-BNI capacity of L. racemosus

can be expressed in chromosome addition line of cultivat-

ed wheat provides the opportunity to further explore the

introduction of the BNI trait into elite wheat cultivars. As

wheat utilizes nearly a third of the total global nitrogen fer-

tilizer output (Raun and Johnson 1999), introducing high-

BNI capacity into cultivated wheat could have a large

impact on reducing nitrogen leakage from wheat production

systems globally. However, the alien chromosome of this

chromosome addition line also carries many undesirable

traits that reduce grain yield potential. This is an example of

negative linkage drag, which is commonly observed in prod-

ucts of crosses, including early-generation backcrosses, of

elite cultivars with wild relatives or other exotic germplasm.

It will be necessary to transfer to wheat only small segment/

s of this L. racemosus chromosome containing favorable al-

leles of genes controlling the BNI trait in order to minimize

negative linkage drag that is associated with this introgres-

sion.

There are various chromosomal manipulation methods to

induce a translocation between wheat and alien chromo-

somes, including irradiation (Sears 1993) and the use of a

gametocidal chromosome system (Endo 2007). Reciprocal

exchange of alien chromosome segments with the corre-

sponding wheat chromosomes (maintaining homoeology)

without disrupting the genetic balance would be preferred.

Centromeric or robertosonian translocations could provide

reciprocal or near-reciprocal translocations in which half of

the target L. racemosus chromosome (short or long arm) re-

places the corresponding wheat chromosome arms. Since

the Lr#n chromosome of L. racemosus that controls the BNI

trait belongs to homoeologous groups 3 and 7 (Kishii et al.

2004), it will be desirable to generate translocations with

wheat chromosomes of the corresponding groups. The pro-

duction of such translocations can be done by crossing the

Lr#n chromosome addition line with group 3 and group 7

monosomic lines of wheat, in which one of the group 3 or

group 7 chromosomes is missing, to produce an F1 hybrid.

Translocations can be obtained in the F2 generation at a cer-

tain frequency (probably low) because of spontaneous

breakage and fusion of Lr#n and group 3 or 7 chromosomes

of wheat that occurs during meiosis in the F1 generation.

Development of a stable homozygous translocation stock

with BNI capacity will likely require several additional gen-

erations of selfing and selection (for both BNI capacity and

good seed set). The resulting centromeric translocation ho-

mozygote with high-BNI capacity could be readily utilized

as a new cultivar if the genetic background of the parental

chromosome addition line and monosomic line are suffi-

ciently elite and the translocation line had lost the undesir-

able traits expressed in the original Lr#n chromosome addi-

tion line. However, it is likely that the stable translocation

will then need to be transferred to more elite backgrounds by

a series of backcrosses. Historically, one good centromeric

translocation can have a huge impact on wheat breeding

(Lukaszewski 2000, Singh et al. 2006).

During the 1980’s it was shown that more than 50% of

wheat varieties bred by CIMMYT had the 1RS.1BL translo-

cation involving the short arm of the 1R chromosome from

rye (Secale cereale L.), which has provided multiple disease

resistance (Singh et al. 2006). However, if the original trans-

location is accompanied by many undesirable traits, it will

be necessary to perform further reduction of the introgressed

L. racemosus chromosome segment. This can be achieved

by suppressing the effect of the Ph1 gene in wheat (which

prevents homoeologous recombination between wheat and

alien chromosomes), using the ph1 gene mutant of common

wheat (Sears 1977) as has been demonstrated in wheat-rye

crosses (Lukaszewski 2000).

Introduction of the BNI trait from L. racemosus to barley

would be difficult following this strategy, because diploid

barley is very sensitive to chromosome manipulation (com-

pared to tetraploid durum wheat or hexaploid bread wheat).

Also, a gene to induce homoeologous recombination like

that found in wheat has not been reported for barley. One

possible method to introduce the L. racemosus chromosome

to barley could be through the use of a tetraploid barley line,

which has its chromosome number doubled with colchicine,

Fig. 5. Karyotype analysis of DALr#n, a chromosome-addition line

derived from L. racemosus × T. aestivum; A. DAPI staining revealed

44 chromosomes; B. The probe of L. racemosus genomic DNA

(green) and TaiI and Afa family repetitive sequences showed the pres-

ence of two Lr#n chromosomes; arrows indicate Lr#n chromosomes

(based on Subbarao et al. 2007e).
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as this would be more tolerant to the addition of alien chro-

mosomes. Utilization of barley-chromosome addition lines

of wheat is an alternative. A set of these addition lines has

been produced (Islam et al. 1975), and it would be possible

to manipulate the homoeologous barley and L. racemosus

chromosomes in wheat first (by crossing the corresponding

barley and L. racemosus chromosome addition lines and

generating the required centromeric translocation) and then

transferring the translocation into barley by crossing the tet-

raploid barley chromosome substitution line with cultivated

diploid barley.

Deployable genetic tools for introduction of high-BNI

capacity into wheat and barley

With the plethora of forward and reverse genetic tech-

niques at our disposal to characterize genotypic variation

and generate isogenic lines (transgenics, mutants, RNAi,

smiRNA) and near-isogenic lines (NILs) differing in their

capacity to modify the rhizosphere environment (Hash et al.

2002, Neumann et al. 2009), it is possible to understand the

genetic control of BNI function, and deploy it as a trait into

elite wheat/barley germplasm. This will require a) availabil-

ity of adequate genetic variation in BNI capacity of roots

within crossable crop germplasm, b) optional identification

of candidate genes controlling the trait and heterologous ex-

pression to verify their role(s) in BNI function, and c) intro-

gression of genes controlling the trait into elite germplasm.

The availability of the entire genome sequences of

Arabidopsis and a range of crop and agricultural plants

(rice, sorghum, potato, barley, tomato, Populus, Medicago,

Lotus, papaya and maize) could facilitate the use of tools

such as ‘genome wide expression profiling’ to identify candi-

date genes controlling mechanisms associated with the rhizo-

sphere (Vij and Tyagi 2007). These emerging tools can be

applied for the identification of candidate genes associated

with the BNI trait, followed by gene function analysis using

mutant populations (if available) (Caldwell et al. 2004).

Once verified, expression of candidate genes in elite germ-

plasm following marker-assisted breeding or transgenic

approaches may lead to crop varieties that can reduce nitrifi-

cation. While this process may seem straightforward, it is im-

portant to note that despite large numbers of transcriptomic

studies on interactions between plants and soils, to date

only a handful have identified genes with function that have

been successfully deployed in elite germplasm (Oh et al.

2007). Indeed, in most cases successful deployment of the

trait has preceded identification of the genes controlling it as

plant breeding can be very effective with a “black box” ap-

proach provided that there is adequate genetic variation and

an efficient protocol for screening large numbers of individ-

uals (or progenies) for the trait of interest (e.g. squeezing

mature spikes of triticale plants standing in the field to rap-

idly assess seed set). With the rapid advances in sequencing

and data analysis capability (Varshney et al. 2009), how-

ever, a transcriptomic approach could have great potential

for identification of candidate genes associated with BNI

function. In addition, integrated map-based approaches can

be adopted for traits for which high throughput phenotyping

systems are available (Sasaki et al. 2004, Raman et al. 2006,

Magalhaes et al. 2004, 2007).

Use of plant populations to understand the genetic control of

BNI in the Triticeae

Significant genotypic variation for traits associated with

the rhizosphere has been reported for various crops. Tradi-

tional varieties/landraces often have traits that do not exist in

elite germplasm (Manske et al. 2000). Wild progenitors and

wild relatives have been extensively used in wheat as

sources of traits such as disease resistance and tolerance to

salinity and aluminum tolerance (Friebe et al. 1996, Munns

et al. 2000). The discrepancy between wild relatives and

elite germplasm with regard to rhizosphere traits is often

attributed to the impact of decades of breeding and selection

under agronomically favorable growing environments (i.e.

water and nutrient sufficiency) (Buso and Bliss 1988,

Rengel and Marschner 2005).

For wheat, the availability of the high-BNI L. racemosus

chromosome addition line can provide a starting point for

expression profiling studies to identify candidate genes for

the BNI trait in the Triticeae. However, there is likely to be

substantial reduction in genetic recombination near the in-

trogressed chromosome segment even in derivatives of the

chromosome addition line carrying the gene(s) controlling

BNI on a much smaller block of L. racemosus chromatin.

Thus conventional forward genetic approaches are not likely

to help much in identifying the genes involved. Neverthe-

less, marker-based approaches for the deployment of the

L. racemosus chromosome segments containing favorable

alleles for genes controlling BNI in diverse cultivated wheat

backgrounds can be an option once linkages with deleterious

traits from L. racemosus have been overcome. As the ge-

nomic regions associated with BNI variation are likely to

differ from cultivated wheat for DArT (diversity array tech-

nology), SNP (single nucleotide polymorphism), indel

(insertion-deletion), and/or STMS (sequence-tagged micro-

satellite) markers, high throughput genotyping and marker-

assisted selection to transfer the trait should be highly effi-

cient.

Another possibility for genotype screening is to use asso-

ciation mapping populations, which will allow screening of

genetically diverse elite cultivars for specific BNI traits and

association of variation in these traits with chromosome

maps of the cultivars annotated with several thousand SNP

and/or DArT markers. This will facilitate the rapid identifica-

tion of QTLs and specific markers for genes. However, this

is contingent upon the availability of a) a trait-phenotyping

protocol that can handle large numbers of cultivars (e.g.

>100), b) significant genetic variation for the trait, and c)

polymorphic marker density (across the entire genome, or at

least within specific candidate genes and their regulatory

regions) that is high enough to detect linkage genetic

disequilibrium between cultivars having high and low values
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for the target trait. If the trait of interest has been ‘bred out’

of the elite cultivars, or if there is relatively limited marker

variation between the cultivars (even when target trait varia-

tion is present), in the genomic regions in which the genes

controlling BNI traits are located, then the amount of rele-

vant variation available may be inadequate for association

mapping unless the study is based on evaluation of a panel of

landrace germplasm accessions of diverse origin. Use of

association mapping populations has previously elucidated

potential QTLs for unknown N- and P-use efficiency mech-

anisms in wheat (Liao et al. 2008) and for resistance or

tolerance to barley yellow dwarf virus in barley (Kraakman

et al. 2006).

Other populations that can be used for assessing the im-

pact of plant traits on rhizosphere processes include popula-

tions saturated with mutations. Such mutant populations

exist not only in Arabidopsis but also in wheat, barley and

sorghum. These populations have their genomes saturated

with mutations (produced by chemical, radioactive or mo-

lecular techniques) either “knocking-out” genes or up- or

down-regulating genes downstream of the mutation. Such an

approach produces thousands of individual mutants and sub-

sequent phenotypic screens to identify a specific trait of in-

terest can allow rapid elucidation of the genes controlling

expression of that trait. However, with the current phenotyp-

ing tools for the BNI trait, characterizing thousands of indi-

vidual mutants for the BNI function could be a daunting

task. Nevertheless, it is possible to use such an approach

(with the assumption that refinement of phenotyping tools

will be possible for BNI in the future) to identify the gene(s)

controlling BNI traits. Several such mutant populations have

been used to establish reverse genetic tools [TILLING (tar-

geted induced local lesions in genomes) populations] that

can be used to identify small numbers of mutants having

DNA sequence variation in a particular candidate gene for

the trait of interest (McCallum et al. 2000). This small subset

of the mutant population can then be screened phenotypical-

ly to determine whether it includes individuals with an inter-

esting trait variation (Till et al. 2007, Xin et al. 2009). The

BNI screening protocol currently available should be ade-

quate for screening the modest number of mutants in a par-

ticular candidate gene that might be identified from such a

TILLING population, so this approach could be used to as-

sess mutants in a small number of genes previously identi-

fied by genome-wide expression profiling studies.

Such an approach would be particularly relevant in barley

as the extremes of an initial screen for BNI (Subbarao and

George, unpublished) were in genotypes cv Optic (high-

BNI) and cv Bowman (low-BNI) that have pre-existing mu-

tant populations (Caldwell et al. 2004, White et al. 2009).

Screening of these populations for loss (Optic) of function

(which is more likely) or gain (Bowman) of function (which

is less likely) will help in elucidating genetic control of the

trait. Examples of successful uses of this approach include

the use of mutants to estimate the contribution of ammonium

or urea transporters to nitrogen uptake (Yuan et al. 2007,

Kojima et al. 2006). Similarly, the contribution of root hairs

to nutrient acquisition was investigated by use of barley mu-

tants without root hairs (Gahoonia et al. 2004).

A conventional bi-parental mapping population of about

400 double haploid lines derived from the cross of barley

cultivars Optic (high-BNI) and Bowman (low-BNI), geno-

typed across the genome with DArT, SNP, AFLP, and/or

STMS markers could be a complementary tool for determin-

ing the genetic basis of BNI variation in this species, assum-

ing that the BNI phenotyping protocol can be modified to

permit phenotyping of the large number of samples that is

required. Such conventional bi-parental mapping popula-

tions have contributed to the determination of the genetic

basis of Al tolerance in both wheat (Sasaki et al. 2004) and

sorghum (Magalhaes et al. 2007), which is conferred by root

exudation of organic acids.

Genes identified using these population screening ap-

proaches can then be validated by over-expression using

transgenic approaches coupling the gene with specific pro-

moters, or by monitoring their loss of function after down-

regulating the gene of interest by RNAi (RNA-interference)

or with the use of smiRNA (synthetic micro RNA) technol-

ogies (Miki and Shimamoto 2004, Alvarez et al. 2006).

Some traits that have a role in influencing the rhizosphere

are often thought to be highly heritable and simply con-

trolled by one or two genes of large effect [(e.g. tolerance to

Al toxicity in wheat) (Delhaize et al. 1993, Sasaki et al.

2004, Raman et al. 2005, 2006) and sorghum (Magalhaes et

al. 2004, 2007) or heavy metal tolerance in Thlaspi (Eapen

and D’Souza 2005)]. If genetic control of BNI proves to be

simple, then such transgenic, RNAi or smiRNA approaches

would be appropriate for candidate gene validation.

However, it is important to consider that traits such as

BNI may be multi-genic in nature, and thus more difficult to

manipulate by altering single genes alone. For example, tol-

erance to Al toxicity in both wheat and sorghum is simply

inherited, with a large portion of the available genetic varia-

tion controlled by a small number of genes having large

allelic differences. However, this same trait is inherited in a

more quantitative manner in maize (Magalhaes et al. 2004).

In such cases, individual candidate genes that might be tar-

geted and/or identified from a genome-wide expression pro-

filing study, association mapping study, or TILLING study,

are not likely to account for large portions of the observed

phenotypic variation for the target trait. Further complexity

due to gene by environment (including genetic background)

interactions can markedly increase the difficulty of trait

deployment into elite genetic stocks. This was highlighted

recently with attempts to improve nutrient efficiency traits us-

ing a single QTL (Liao et al. 2008, George et al. “in press”).

In species where BNI capacity is found to be largely under

quantitative genetic control or shown to have strong geno-

type by environment interactions, it will likely to be difficult

and/or expensive to deploy this trait in a wide range of elite

cultivars. There are thus, many challenges ahead for

successful deployment of BNI function as a target trait in
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routine breeding programs to control nitrification in wheat

and barley production systems.

Concluding remarks and future outlook

Modern agricultural systems are dependent on large min-

eral N inputs as the primary N source for crop production

(De Wit et al. 1987). In addition, the changes in cropping

systems (i.e. moving away from diverse crop rotations to

monocultures) and crop management practices have resulted

in the development of high-nitrifying environments in mod-

ern production agriculture (Poudel et al. 2002). Many mod-

ern high-yielding crop varieties bred for these production

environments have inadvertently been selected for their

preference for NO3
− over NH4

+. It appears that most staple

food crops completely lack BNI capacity or lack sufficient

BNI capacity to control nitrification. These factors have

possibly contributed towards evolution of the current

nitrification-dominated N-cycle in agricultural systems,

which is an inefficient and extremely leaky system that is al-

ready causing serious environmental problems (Tilman et al.

2001, Hungate et al. 2003, Schlesinger 2009). Genetic

exploitation of the BNI capacity in relatives of major crops

and pastures could provide a range of biological options to

deliver BNIs to the nitrifier sites as a means to reduce soil

nitrification. Developing the next-generation of crops with

built-in genetic BNI capacity should be an integral part of

strategies to improve N-cycling efficiency in production

agriculture and reduce the negative impact of human activi-

ties on our environment.

Recent findings indicate that a number of diverse chemi-

cal molecules have an inhibitory effect on nitrification, that

these can be produced by plants, and that they could be re-

leased into the soil to control nitrification. The AMO (the

critical enzyme involved in Nitrosomonas for ammonia oxi-

dation) enzyme has affinity to a wide range of substrates

apart from ammonia as its primary substrate, thus it is a very

unique enzyme indeed (Hauck 1980, McCarty 1999). This

fundamental weakness in the functioning of AMO enzyme

opens the way for nitrifiers to be influenced by a wide range

of molecules with diverse chemical structures that could act

as inhibitors of nitrification (Hauck 1990, Subbarao et al.

2006a). This has been exploited during the development of

chemical nitrification inhibitors (Subbarao et al. 2006a). Re-

cent findings indicate that biological molecules with diverse

chemical structures inhibit nitrifiers’ activity by possibly in-

terfering with the functioning of the AMO enzymatic path-

way. Thus there is enormous potential for the identification

of new biological molecules with novel chemical structures

that are yet to be discovered and identified as powerful nitri-

fication inhibitors. These BNIs can be exploited by both

plant scientists and natural product chemists to develop a

range of biological and chemical strategies for controlling

nitrification in agricultural systems. Moving away from the

current NO3
− dominated production systems will contribute

towards development and adoption of more environmentally

responsible and sustainable production systems. Such pro-

duction systems would serve to reduce the undesirable im-

pact of N-fertilizers on the global environment.
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