1,006 research outputs found

    Formation of 24Mg* in the Splitting of 28Si Nuclei by 1-GeV Protons

    Get PDF
    The 28Si(p, p' gamma)24Mg reaction has been studied at the ITEP accelerator by the hadron-gamma coincidence method for a proton energy of 1 GeV. Two reaction products are detected: a 1368.6-keV gamma-ray photon accompanying the transition of the 24Mg* nucleus from the first excited state to the ground state and a proton p' whose momentum is measured in a magnetic spectrometer. The measured distribution in the energy lost by the proton in interaction is attributed to five processes: the direct knockout of a nuclear alpha cluster, the knockout of four nucleons with a total charge number of 2, the formation of the DeltaSi isobaric nucleus, the formation of the Delta isobar in the interaction of the incident proton with a nuclear nucleon, and the production of a pi meson, which is at rest in the nuclear reference frame. The last process likely corresponds to the reaction of the formation of a deeply bound pion state in the 28P nucleus. Such states were previously observed only on heavy nuclei. The cross sections for the listed processes have been estimated.Comment: 14 pages, 3 figures submitted to JETP Letter

    Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS

    Full text link
    We report on a direct search for sub-GeV dark photons (A') which might be produced in the reaction e^- Z \to e^- Z A' via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The A's would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75\cdot 10^{9} electrons on target. We set new limits on the \gamma-A' mixing strength and exclude the invisible A' with a mass < 100 MeV as an explanation of the muon g_\mu-2 anomaly.Comment: 6 pages, 3 figures; Typos corrected, references adde

    Comparative study of thermostability and structure of close homologues - bamase and binase

    Get PDF
    Parameters of heat denaturation and intrinsic fluorescence of bamase and its close homologue, binase in the pH region 2-6 have been determined. The bamase heat denaturation (pH 2.85.5) proceeds according to the “all-or-none” principle. Bamase denaturation temperature is lower than that of binase and this difference increases from 2.5 °C at pH 5 to 7 °C at pH 3. Enthalpy values of bamase and binase denaturation coincide only at pH 4.5-5.5, but as far as pH decreases the bamase denaturation enthalpy decreases significantly and in this respect it differs from binase. The fluorescence and CD techniques do not reveal any distinctions in the local environment of aromatic residues in the two proteins, and the obtained difference in the parameters of intrinsic fluorescence is due to fluorescence quenching of the bamase Trp94 by the His 18 residue, absent in binase. Secondary structures of both native and denaturated proteins also do not differ. Some differences in the barnase and binase electrostatic characteristics, revealed in the character of the dipole moments distribution, have been found. © 1993 Taylor & Francis Ltd

    A New 76Ge Double Beta Decay Experiment at LNGS

    Full text link
    This Letter of Intent has been submitted to the Scientific Committee of the INFN Laboratori Nazionali del Gran Sasso (LNGS) in March 2004. It describes a novel facility at the LNGS to study the double beta decay of 76Ge using an (optionally active) cryogenic fluid shield. The setup will allow to scrutinize with high significance on a short time scale the current evidence for neutrinoless double beta decay of 76Ge using the existing 76Ge diodes from the previous Heidelberg-Moscow and IGEX experiments. An increase in the lifetime limit can be achieved by adding more enriched detectors, remaining thereby background-free up to a few 100 kg-years of exposure.Comment: 67 pages, 19 eps figures, 17 tables, gzipped tar fil

    Flux Modulations seen by the Muon Veto of the GERDA Experiment

    Full text link
    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66~PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two effects have been identified which are caused by secondary muons from the CNGS neutrino beam (2.2 %) and a temperature modulation of the atmosphere (1.4 %). A mean cosmic muon rate of Iμ0=(3.477±0.002stat±0.067sys)×104I^0_{\mu} = (3.477 \pm 0.002_{\textrm{stat}} \pm 0.067_{\textrm{sys}}) \times 10^{-4}/(s\cdotm2^2) was found in good agreement with other experiments at LNGS at a depth of 3500~meter water equivalent.Comment: 7 pages, 6 figure

    Characterization of 30 76^{76}Ge enriched Broad Energy Ge detectors for GERDA Phase II

    Get PDF
    The GERmanium Detector Array (GERDA) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double beta decay of 76^{76}Ge into 76^{76}Se+2e^-. GERDA has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new Ge detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the HADES underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for GERDA Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the strength of pulse shape simulation codes.Comment: 29 pages, 18 figure
    corecore