9 research outputs found

    Wintertime Arctic Air Pollution over Alaska

    No full text
    International audienceThe Arctic is influenced by long-range transport of aerosols, for example, sulphate, black carbon, and dust from mid-latitude emissions, especially in winter and spring, leading to the formation of Arctic Haze with enhanced aerosol concentrations. However, more recently, local sources of aerosols, such as wood-burning or resource extraction, are highlighted as already being important, but many uncertainties about sources and aerosol processes still remain. For example, the formation of secondary aerosols, such as sulphate, in winter despite very low temperatures and the absence of sunlight. In this study, which contributes to the international PACES-ALPACA initiative, the Weather Research Forecasting (WRF) and WRF-Chem models are used to investigate wintertime pollution over Alaska with a focus on regions influenced by local pollution, such as Fairbanks and by Arctic Haze, such as Utqiagvik (formerly known as Barrow). Fairbanks is the most polluted city in the United States during wintertime due to high emissions and the occurrence of strong surface temperature inversions. As a first step, background aerosols originating from remote sources were evaluated in large- scale quasi-hemispheric WRF-Chem runs using ECLIPSE anthropogenic emissions. The model performs quite well over Alaska at background sites (e.g. Denali Park) compared to observations from the US Environmental Protection Agency (EPA). Discrepancies in modelled aerosols due to formation mechanisms and aerosol acidity are being investigated. Secondly, in order to better simulate Arctic aerosols and local pollution episodes, different schemes in WRF were tested over Alaska with a particular focus on improving simulations of the Arctic boundary layer structure and, in particular, wintertime temperature inversions which trap pollution at the ground. In order to simulate these extreme/cold meteorological conditions, different schemes linked to boundary layer physics, surface layer dynamics and the land surface have been tested and evaluated against Integrated Global Radiosonde Archive (IGRA2) and Integrated Surface Database (ISD). The model captures the cold meteorological conditions over Alaska, for example, capturing strong temperature inversions over Utqiagvik and Fairbanks in winter 2012.Thirdly, WRF-Chem is used to simulate background and local Arctic air pollution, using the improved WRF setup for meteorology over Alaska for winter 2013-2014. The model is being run with Hemispheric Transport of Air Pollution version 2 (HTAP v2) and other high-resolution emission inventories and evaluated against available aerosol data (PM2.5, black carbon, sulphate) over Alaska including data on aerosol chemical properties. The model is used to examine aerosol composition in locally produced and remote aerosols and to identify the origins contributing to aerosol distributions. The sensitivity of modelled aerosols to, for example, meteorological factors, such as humidity, is examined

    Atomic Force Microscopy-Infrared Spectroscopy of Individual Atmospheric Aerosol Particles: Subdiffraction Limit Vibrational Spectroscopy and Morphological Analysis

    No full text
    Chemical analysis of atmospheric aerosols is an analytical challenge, as aerosol particles are complex chemical mixtures that can contain hundreds to thousands of species in attoliter volumes at the most abundant sizes in the atmosphere (∼100 nm). These particles have global impacts on climate and health, but there are few methods available that combine imaging and the detailed molecular information from vibrational spectroscopy for individual particles <500 nm. Herein, we show the first application of atomic force microscopy with infrared spectroscopy (AFM-IR) to detect trace organic and inorganic species and probe intraparticle chemical variation in individual particles down to 150 nm. By detecting photothermal expansion at frequencies where particle species absorb IR photons from a tunable laser, AFM-IR can study particles smaller than the optical diffraction limit. Combining strengths of AFM (ambient pressure, height, morphology, and phase measurements) with photothermal IR spectroscopy, the potential of AFM-IR is shown for a diverse set of single-component particles, liquid–liquid phase separated particles (core–shell morphology), and ambient atmospheric particles. The spectra from atmospheric model systems (ammonium sulfate, sodium nitrate, succinic acid, and sucrose) had clearly identifiable features that correlate with absorption frequencies for infrared-active modes. Additionally, molecular information was obtained with <100 nm spatial resolution for phase separated particles with a ∼150 nm shell and 300 nm core. The subdiffraction limit capability of AFM-IR has the potential to advance understanding of particle impacts on climate and health by improving analytical capabilities to study water uptake, heterogeneous reactivity, and viscosity

    Modelling wintertime sea-spray aerosols under Arctic haze conditions

    No full text
    Anthropogenic and natural emissions contribute to enhanced concentrations of aerosols in the Arctic winter and early spring, with most attention being paid to anthropogenic aerosols that contribute to so-called Arctic haze. Less-well-studied wintertime sea-spray aerosols (SSAs) under Arctic haze conditions are the focus of this study, since they can make an important contribution to wintertime Arctic aerosol abundances. Analysis of field campaign data shows evidence for enhanced local sources of SSAs, including marine organics at Utqiaġvik (formerly known as Barrow) in northern Alaska, United States, during winter 2014. Models tend to underestimate sub-micron SSAs and overestimate super-micron SSAs in the Arctic during winter, including the base version of the Weather Research Forecast coupled with Chemistry (WRF-Chem) model used here, which includes a widely used SSA source function based on Gong et al. (1997). Quasi-hemispheric simulations for winter 2014 including updated wind speed and sea-surface temperature (SST) SSA emission dependencies and sources of marine sea-salt organics and sea-salt sulfate lead to significantly improved model performance compared to observations at remote Arctic sites, notably for coarse-mode sodium and chloride, which are reduced. The improved model also simulates more realistic contributions of SSAs to inorganic aerosols at different sites, ranging from 20 %–93 % in the observations. Two-thirds of the improved model performance is from the inclusion of the dependence on SSTs. The simulation of nitrate aerosols is also improved due to less heterogeneous uptake of nitric acid on SSAs in the coarse mode and related increases in fine-mode nitrate. This highlights the importance of interactions between natural SSAs and inorganic anthropogenic aerosols that contribute to Arctic haze. Simulation of organic aerosols and the fraction of sea-salt sulfate are also improved compared to observations. However, the model underestimates episodes with elevated observed concentrations of SSA components and sub-micron non-sea-salt sulfate at some Arctic sites, notably at Utqiaġvik.Possible reasons are explored in higher-resolution runs over northern Alaska for periods corresponding to the Utqiaġvik field campaign in January and February 2014.The addition of a local source of sea-salt marine organics, based on the campaign data, increases modelled organic aerosols over northern Alaska. However, comparison with previous available data suggests that local natural sources from open leads, as well as local anthropogenic sources, are underestimated in the model. Missing local anthropogenic sources may also explain the low modelled (sub-micron) non-sea-salt sulfate at Utqiaġvik. The introduction of a higher wind speed dependence for sub-micron SSA emissions, also based on Arctic data, reduces biases in modelled sub-micron SSAs, while sea-ice fractions, including open leads, are shown to be an important factor controlling modelled super-micron, rather than sub-micron, SSAs over the north coast of Alaska. The regional results presented here show that modelled SSAs are more sensitive to wind speed dependence but that realistic modelling of sea-ice distributions is needed for the simulation of local SSAs, including marine organics. This study supports findings from the Utqiaġvik field campaign that open leads are the primary source of fresh and aged SSAs, including marine organic aerosols, during wintertime at Utqiaġvik; these findings do not suggest an influence from blowing snow and frost flowers. To improve model simulations of Arctic wintertime aerosols, new field data on processes that influence wintertime SSA production, in particular for fine-mode aerosols, are needed as is improved understanding about possible local anthropogenic sources

    Contributions of Transported Prudhoe Bay Oilfield Emissions to the Aerosol Population in Utqiaġvik, Alaska

    Get PDF
    Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiaġvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13-4 μm projected area diameter) and real-time single-particle mass spectrometry (0.2-1.5 μm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 % of the study), our results show that fresh sea spray aerosol contributed ∼ 20 %, by number, of particles between 0.13 and 0.4 μm, 40-70 % between 0.4 and 1 μm, and 80-100 % between 1 and 4 μm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13-1 μm) combustion-derived particles (20-50 % organic carbon, by number; 5-10 % soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 μm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm-3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations

    Modelling wintertime sea-spray aerosols under Arctic haze conditions

    No full text
    Anthropogenic and natural emissions contribute to enhanced concentrations of aerosols in the Arctic winter and early spring, with most attention being paid to anthropogenic aerosols that contribute to so-called Arctic haze. Less-well-studied wintertime sea-spray aerosols (SSAs) under Arctic haze conditions are the focus of this study, since they can make an important contribution to wintertime Arctic aerosol abundances. Analysis of field campaign data shows evidence for enhanced local sources of SSAs, including marine organics at Utqiaġvik (formerly known as Barrow) in northern Alaska, United States, during winter 2014. Models tend to underestimate sub-micron SSAs and overestimate super-micron SSAs in the Arctic during winter, including the base version of the Weather Research Forecast coupled with Chemistry (WRF-Chem) model used here, which includes a widely used SSA source function based on Gong et al. (1997). Quasi-hemispheric simulations for winter 2014 including updated wind speed and sea-surface temperature (SST) SSA emission dependencies and sources of marine sea-salt organics and sea-salt sulfate lead to significantly improved model performance compared to observations at remote Arctic sites, notably for coarse-mode sodium and chloride, which are reduced. The improved model also simulates more realistic contributions of SSAs to inorganic aerosols at different sites, ranging from 20 %–93 % in the observations. Two-thirds of the improved model performance is from the inclusion of the dependence on SSTs. The simulation of nitrate aerosols is also improved due to less heterogeneous uptake of nitric acid on SSAs in the coarse mode and related increases in fine-mode nitrate. This highlights the importance of interactions between natural SSAs and inorganic anthropogenic aerosols that contribute to Arctic haze. Simulation of organic aerosols and the fraction of sea-salt sulfate are also improved compared to observations. However, the model underestimates episodes with elevated observed concentrations of SSA components and sub-micron non-sea-salt sulfate at some Arctic sites, notably at Utqiaġvik.Possible reasons are explored in higher-resolution runs over northern Alaska for periods corresponding to the Utqiaġvik field campaign in January and February 2014.The addition of a local source of sea-salt marine organics, based on the campaign data, increases modelled organic aerosols over northern Alaska. However, comparison with previous available data suggests that local natural sources from open leads, as well as local anthropogenic sources, are underestimated in the model. Missing local anthropogenic sources may also explain the low modelled (sub-micron) non-sea-salt sulfate at Utqiaġvik. The introduction of a higher wind speed dependence for sub-micron SSA emissions, also based on Arctic data, reduces biases in modelled sub-micron SSAs, while sea-ice fractions, including open leads, are shown to be an important factor controlling modelled super-micron, rather than sub-micron, SSAs over the north coast of Alaska. The regional results presented here show that modelled SSAs are more sensitive to wind speed dependence but that realistic modelling of sea-ice distributions is needed for the simulation of local SSAs, including marine organics. This study supports findings from the Utqiaġvik field campaign that open leads are the primary source of fresh and aged SSAs, including marine organic aerosols, during wintertime at Utqiaġvik; these findings do not suggest an influence from blowing snow and frost flowers. To improve model simulations of Arctic wintertime aerosols, new field data on processes that influence wintertime SSA production, in particular for fine-mode aerosols, are needed as is improved understanding about possible local anthropogenic sources

    Unexpected Contributions of Sea Spray and Lake Spray Aerosol to Inland Particulate Matter

    No full text
    Sea spray aerosol (SSA) and lake spray aerosol (LSA) from wave breaking contribute to particulate matter (PM) in coastal regions near oceans and freshwater lakes, respectively. However, SSA and LSA contributions to atmospheric aerosol populations in inland regions are poorly understood because of difficulties differentiating them from other inland sources when using bulk particle measurements. Herein, we show that SSA and LSA episodically contribute to atmospheric aerosol populations at a rural site in northern Michigan >700 and >25 km from the nearest seawater and Great Lakes sources, respectively. During July 2014, individual SSA and LSA particles were identified by single-particle mass spectrometry and electron microscopy and then combined with air mass trajectory analysis for source apportionment. SSA comprised up to 33 and 20% of PM mass (0.5–2.0 μm) during two multiday transport events from Hudson Bay and a 3% average background outside these periods. LSA transported from Lake Michigan reached a maximum of 7% of PM mass (0.5–2 μm) during a daylong high-wind event and contributed a 3% average background during the remainder of the study. The observation of SSA and LSA transported inland motivates further studies of the impacts of wave breaking particles on cloud formation and air quality at inland locations far from marine and freshwater sources

    Aerosol Emissions from Great Lakes Harmful Algal Blooms

    No full text
    In freshwater lakes, harmful algal blooms (HABs) of <i>Cyanobacteria</i> (blue-green algae) produce toxins that impact human health. However, little is known about the lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, LSA were produced in the laboratory from freshwater samples collected from Lake Michigan and Lake Erie during HAB and nonbloom conditions. The incorporation of biological material within the individual HAB-influenced LSA particles was examined by single-particle mass spectrometry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and fluorescence microscopy. Freshwater with higher blue-green algae content produced higher number fractions of individual LSA particles that contained biological material, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of individual LSA particles containing biological material also increased with particle diameter (greater than 0.5 μm), a size dependence that is consistent with previous studies of sea spray aerosol impacted by phytoplankton blooms. Similar to sea spray aerosol, organic carbon markers were most frequently observed in individual LSA particles less than 0.5 μm in diameter. Understanding the transfer of biological material from freshwater to the atmosphere via LSA is crucial for determining health and climate effects of HABs
    corecore