60 research outputs found

    The Extinction Towards the GRB970228 Field

    Get PDF
    We determine the local galactic extinction towards the field of gamma-ray burst GRB970228 using a variety of methods. We develop a maximum likelihood method for measuring the extinction by comparing galaxy counts in the field of interest to those in a field of known extinction, and apply this method to the GRB970228 field. We also measure the extinction by comparing the observed stellar spectral energy distributions of stars in the GRB970228 field to the spectral energy distribution of library spectra of the same spectral type. Finally we estimate the extinction using the Balmer emission line ratios of a galaxy in the GRB970228 field, and the neutral hydrogen column density and amount of infrared dust emission toward this field. Combining the results of these methods, we find a best-fit galactic extinction in the optical of AV=1.19−0.17+0.10A_V=1.19^{+0.10}_{-0.17}, which implies a a substantial dimming and change of the spectral slope of the intrinsic GRB970228 afterglow.Comment: 22 pages, including 7 figures. Submitted to Ap

    Slow dynamics and aging in a non-randomly frustrated spin system

    Full text link
    A simple, non-disordered spin model has been studied in an effort to understand the origin of the precipitous slowing down of dynamics observed in supercooled liquids approaching the glass transition. A combination of Monte Carlo simulations and exact calculations indicates that this model exhibits an entropy vanishing transition accompanied by a rapid divergence of time scales. Measurements of various correlation functions show that the system displays a hierarchy of time scales associated with different degrees of freedom. Extended structures, arising from the frustration in the system, are identified as the source of the slow dynamics. In the simulations, the system falls out of equilibrium at a temperature TgT_{g} higher than the entropy-vanishing transition temperature and the dynamics below TgT_{g} exhibits aging as distinct from coarsening. The cooling rate dependence of the energy is also consistent with the usual glass formation scenario.Comment: 41 pages, 16 figures. Bibliography file is correcte

    Assessing population genetic structure via the maximisation of genetic distance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics.</p> <p>Methods</p> <p>In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a <it>simulated annealing </it>algorithm) of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set.</p> <p>Results</p> <p>The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for <it>F</it><sub><it>ST </it></sub>≄ 0.03, but only STRUCTURE estimates the correct number of clusters for <it>F</it><sub><it>ST </it></sub>as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found.</p> <p>Conclusion</p> <p>This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy-Weinberg and linkage equilibrium, performs well under different simulated scenarios and with real data. Therefore, it could be a useful tool to determine genetically homogeneous groups, especially in those situations where the number of clusters is high, with complex population structure and where Hardy-Weinberg and/or linkage equilibrium are present.</p

    Antibiotic Transport in Resistant Bacteria: Synchrotron UV Fluorescence Microscopy to Determine Antibiotic Accumulation with Single Cell Resolution

    Get PDF
    A molecular definition of the mechanism conferring bacterial multidrug resistance is clinically crucial and today methods for quantitative determination of the uptake of antimicrobial agents with single cell resolution are missing. Using the naturally occurring fluorescence of antibacterial agents after deep ultraviolet (DUV) excitation, we developed a method to non-invasively monitor the quinolones uptake in single bacteria. Our approach is based on a DUV fluorescence microscope coupled to a synchrotron beamline providing tuneable excitation from 200 to 600 nm. A full spectrum was acquired at each pixel of the image, to study the DUV excited fluorescence emitted from quinolones within single bacteria. Measuring spectra allowed us to separate the antibiotic fluorescence from the autofluorescence contribution. By performing spectroscopic analysis, the quantification of the antibiotic signal was possible. To our knowledge, this is the first time that the intracellular accumulation of a clinical antibitiotic could be determined and discussed in relation with the level of drug susceptibility for a multiresistant strain. This method is especially important to follow the behavior of quinolone molecules at individual cell level, to quantify the intracellular concentration of the antibiotic and develop new strategies to combat the dissemination of MDR-bacteria. In addition, this original approach also indicates the heterogeneity of bacterial population when the same strain is under environmental stress like antibiotic attack

    Simulated annealing in protein folding

    No full text

    Evaluation-Based Design Principles

    No full text
    • 

    corecore