675 research outputs found
A Young Planetary-Mass Object in the ρ Oph Cloud Core
We report the discovery of a young planetary-mass brown dwarf in the ρ Oph cloud core. The object was identified as such with the aid of a 1.5-2.4 μm low-resolution spectrum obtained using the NIRC instrument on the Keck I telescope. Based on the COND model, the observed spectrum is consistent with a reddened (A_V ~ 15-16) brown dwarf whose effective temperature is in the range 1200-1800 K. For an assumed age of 1 Myr, comparison with isochrones further constrains the temperature to ~1400 K and suggests a mass of ~2-3 Jupiter masses. The inferred temperature is suggestive of an early T spectral type, which is supported by spectral morphology consistent with weak methane absorption. Based on its inferred distance (~100 pc) and the presence of overlying visual absorption, it is very likely to be a ρ Oph cluster member. In addition, given the estimated spectral type, it may be the youngest and least massive T dwarf found so far. Its existence suggests that the initial mass function for the ρ Oph star-forming region extends well into the planetary-mass regime
Low-mass Tertiary Companions to Spectroscopic Binaries. I. Common Proper Motion Survey for Wide Companions Using 2MASS
We report the first results of a multi-epoch search for wide (separations greater than a few tens of AU), low-mass tertiary companions of a volume-limited sample of 118 known spectroscopic binaries within 30 pc of the Sun, using the Two Micron All Sky Survey Point Source Catalog and follow-up observations with the KPNO and CTIO 4 m telescopes. Note that this sample is not volume complete but volume limited, and, thus, there is incompleteness in our reported companion rates. We are sensitive to common proper motion companions with separations from roughly 200 AU to 10,000 AU (~10ˮ → ~ 10'). From 77 sources followed-up to date, we recover 11 previously known tertiaries, 3 previously known candidate tertiaries, of which 2 are spectroscopically confirmed and 1 rejected, and 3 new candidates, of which 2 are confirmed and 1 rejected. This yields an estimated wide tertiary fraction of 19.5^(+5.2)_(–3.7)%. This observed fraction is consistent with predictions set out in star formation simulations where the fraction of wide, low-mass companions to spectroscopic binaries is >10%
Near-Infrared Variability in the 2MASS Calibration Fields: A Search for Planetary Transit Candidates
The 2MASS photometric calibration observations cover ~6 square degrees on the
sky in 35 "calibration fields" each sampled in nominal photometric conditions
between 562 and 3692 times during the four years of the 2MASS mission. We
compile a catalog of variables from the calibration observations to search for
M dwarfs transited by extra-solar planets. We present our methods for measuring
periodic and non-periodic flux variability. From 7554 sources with apparent Ks
magnitudes between 5.6 and 16.1, we identify 247 variables, including
extragalactic variables and 23 periodic variables. We have discovered three M
dwarf eclipsing systems, including two candidates for transiting extrasolar
planets.Comment: The Astrophysical Journal Supplement, in press; figures compresse
First record of verticillium wilt (Verticillium longisporum) in winter oilseed rape in the UK
Verticillium longisporum is an important pathogen of oilseed rape (OSR) and vegetable brassicas in several European countries, but has not been reported previously in the UK (Karapapa et al., 1997; Steventon et al., 2002). In 2007, Verticillium wilt was suspected in UK crops of winter OSR (W-OSR) on cv. Castille in Romney Marsh, Kent and on cv. Barrel near Hereford. At these two locations, 32 and 10% of the plants, respectively, appeared to be affected, but the presence of stem canker may have masked some infections. Symptoms were first seen as the crops began to ripen (seeds green-brown to brown, Growth Stage: 6,4-6,5) and included brown and dark grey vertical bands on the stems from soil level into the branches, and premature ripening of some branches (Fig. 1).
Microsclerotia were observed on stem samples collected in the field (Fig. 2), suggesting V. longisporum as the causal agent. Cultures were prepared from field samples by immersing stem pieces in 5% sodium hypochlorite solution for one minute, washing twice in sterile distilled water and plating onto potato dextrose agar containing 25 mg/l streptomycin sulphate. Isolates from three plants per outbreak were identified morphologically as V. longisporum. Mean conidial dimensions (25 spores per isolate) were 8.80-9.65 μm (length) and 2.50-2.85 μm (width) and all isolates produced elongated microsclerotia, characters typical of V. longisporum (Karapapa et al., 1997). The identity was confirmed by PCR using species-specific primers (Steventon et al., 2002) and, as a member of the α sub-group, by direct sequencing of the amplicons from primer pairs ITS4-ITS5 and DB19-DB22 (Collins et al., 2003; 2005). Sequences for isolate 003 from Kent were deposited in GenBank (Accession Nos. HQ702376 and HQ702377). All isolates tested from 2008 and 2009 were identical with previously deposited sequences for European OSR isolates (e.g. AF363992 and AF363246 respectively). Pathogenicity was confirmed by inoculating three OSR cv. Castille seedlings per isolate using the root dip technique with 1 x 106 spores/ml (Karapapa et al., 1997) under heated glasshouse conditions at 19°C. Leaf yellowing and blackening of the leaf veins were found 26 days after inoculation (Fig. 3). Yellowing affecting the three oldest leaves increased for seven to nine days. After five weeks the final mean leaf area affected was 63-78% with no differences between isolates. No leaf yellowing occurred in the controls. After five weeks, V. longisporum was re-isolated from all the inoculated seedlings, but not from the non-inoculated controls.
In June 2008, infection of W-OSR crops in different fields on the same farms was found on cv. Es Astrid in Kent (56% incidence) and on cv. Lioness in Hereford (15% incidence). The Kent farm had been growing W-OSR alternating with winter wheat for at least 10 years whilst the Hereford farm had grown W-OSR one year in four. These short rotations of OSR may be contributing to the appearance of this disease. This study confirms the identification of V. longisporum on any host in the UK, through molecular studies and detailed spore measurements that were not reported in an earlier review (Gladders, 2009). This pathogen occurs in several European countries and, since OSR may be traded freely, following a Defra consultation, no statutory plant health action is to be taken
Stripe glasses: self generated randomness in a uniformly frustrated system
We show that a system with competing interactions on different length scales,
as relevant for the formation of stripes in doped Mott insulators, undergoes a
self-generated glass transition which is caused by the frustrated nature of the
interactions and not related to the presence of quenched disorder. An
exponentially large number of metastable configurations is found, leading to a
slow, landscape dominated long time relaxation and a break up of the system
into a disordered inhomogeneous state.Comment: 5 pages, 2 figure
A T8.5 Brown Dwarf Member of the Xi Ursae Majoris System
The Wide-field Infrared Survey Explorer has revealed a T8.5 brown dwarf (WISE
J111838.70+312537.9) that exhibits common proper motion with a
solar-neighborhood (8 pc) quadruple star system - Xi Ursae Majoris. The angular
separation is 8.5 arc-min, and the projected physical separation is about 4000
AU. The sub-solar metallicity and low chromospheric activity of Xi UMa A argue
that the system has an age of at least 2 Gyr. The infrared luminosity and color
of the brown dwarf suggests the mass of this companion ranges between 14 and 38
Jupiter masses for system ages of 2 and 8 Gyr respectively.Comment: AJ in press, 12 pages LaTeX with 6 figures. More astrometric data and
a laser guide star adaptive optics image adde
Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates
We present Spitzer 3.6 and 4.5 m photometry and positions for a sample
of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these,
166 have been spectroscopically classified as objects with spectral types M(1),
L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature.
The remainder are most likely distant L and T dwarfs lacking spectroscopic
verification, other Y dwarf candidates still awaiting follow-up, and assorted
other objects whose Spitzer photometry reveals them to be background sources.
We present a catalog of Spitzer photometry for all astrophysical sources
identified in these fields and use this catalog to identify 7 fainter (4.5
m 17.0 mag) brown dwarf candidates, which are possibly wide-field
companions to the original WISE sources. To test this hypothesis, we use a
sample of 919 Spitzer observations around WISE-selected high-redshift
hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we
find another 6 brown dwarf candidates, suggesting that the 7 companion
candidates are not physically associated. In fact, only one of these 7 Spitzer
brown dwarf candidates has a photometric distance estimate consistent with
being a companion to the WISE brown dwarf candidate. Other than this there is
no evidence for any widely separated ( 20 AU) ultra-cool binaries. As an
adjunct to this paper, we make available a source catalog of 7.33
objects detected in all of these Spitzer follow-up fields for use
by the astronomical community. The complete catalog includes the Spitzer 3.6
and 4.5 m photometry, along with positionally matched and
photometry from USNO-B; , , and photometry from 2MASS; and ,
, , and photometry from the WISE all-sky catalog
WISE Brown Dwarf Binaries: The Discovery of a T5+T5 and a T8.5+T9 System
The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging cannot only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9
Microscopic Theory of Heterogeneity and Non-Exponential Relaxations in Supercooled Liquids
Recent experiments and computer simulations show that supercooled liquids
around the glass transition temperature are "dynamically heterogeneous" [1].
Such heterogeneity is expected from the random first order transition theory of
the glass transition. Using a microscopic approach based on this theory, we
derive a relation between the departure from Debye relaxation as characterized
by the value of a stretched exponential response function , and the fragility of the liquid. The
value is also predicted to depend on temperature and to vanish as the ideal
glass transition is approached at the Kauzmann temperature.Comment: 4 pages including 3 eps figure
- …