598 research outputs found

    Progressive Neural Networks

    Full text link
    Learning to solve complex sequences of tasks--while both leveraging transfer and avoiding catastrophic forgetting--remains a key obstacle to achieving human-level intelligence. The progressive networks approach represents a step forward in this direction: they are immune to forgetting and can leverage prior knowledge via lateral connections to previously learned features. We evaluate this architecture extensively on a wide variety of reinforcement learning tasks (Atari and 3D maze games), and show that it outperforms common baselines based on pretraining and finetuning. Using a novel sensitivity measure, we demonstrate that transfer occurs at both low-level sensory and high-level control layers of the learned policy

    Uptake and cytotoxicity of citrate-coated gold nanospheres : comparative studies on human endothelial and epithelial cells

    Get PDF
    The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs is essential. Although generally considered as highly biocompatible, previous in vitro studies have shown that cytotoxicity of AuNPs in certain human epithelial cells was observed. In particular, the degree of purification of AuNPs (presence of sodium citrate residues on the particles) was shown to affect the proliferation and induce cytotoxicity in these cells. To expand these studies, we have examined if the effects are related to nanoparticle size (10, 11 nm, 25 nm), to the presence of sodium citrate on the particles' surface or they are due to a varying degree of internalization of the AuNPs. Since two cell types are present in the major barriers to the outside in the human body, we have also included endothelial cells from the vasculature and blood brain barrier. Results Transmission electron microscopy demonstrates that the internalized gold nanoparticles are located within vesicles. Increased cytotoxicity was observed after exposure to AuNPs and was found to be concentration-dependent. In addition, cell viability and the proliferation of both endothelial cells decreased after exposure to gold nanoparticles, especially at high concentrations. Moreover, in contrast to the size of the particles (10 nm, 11 nm, 25 nm), the presence of sodium citrate on the nanoparticle surface appeared to enhance these effects. The effects on microvascular endothelial cells from blood vessels were slightly enhanced compared to the effects on brain-derived endothelial cells. A quantification of AuNPs within cells by ICP-AES showed that epithelial cells internalized a higher quantity of AuNPs compared to endothelial cells and that the quantity of uptake is not correlated with the amount of sodium citrate on the nanoparticles’ surface. Conclusions In conclusion the higher amount of citrate on the particle surface resulted in a higher impairment of cell viability, but did not enhance or reduce the uptake behavior in endothelial or epithelial cells. In addition, epithelial and endothelial cells exhibited different uptake behaviors for citrate-stabilized gold nanoparticles, which might be related to different interactions occurring at the nanoparticle-cell-surface interface. The different uptake in epithelial cells might explain the higher reduction of proliferation of these cells after exposure to AuNPs treatment although more detailed investigations are necessary to determine subcellular events. Nevertheless an extrinsic effect of sodium-citrate stabilized particles could not be excluded. Thus, the amount of sodium citrate should be reduced to a level on which the stability of the particles and the safety for biomedical applications are guaranteed

    Resonance modes in the standard piezoceramic shear geometry: A discussion based on finite element analysis

    Get PDF
    El pdf del artículo es el manuscrito de autor.Several authors developed methods for the complex characterization of piezoceramics from complex impedance measurements at resonance. Alemany et al. developed an automatic iterative method, applied and reported in a first publication to four modes of resonance: (1) the length extensional mode of a thickness poled rectangular bar; (2) the length extensional mode of long rods or rectangular bars, length poled; (3) the thickness extensional mode of a thin plate and (4) the thickness shear mode of a thin plate. In a second publication it was reported the application of the method to (5) the radial mode of a thin disk, thickness poled, the most mathematically complex geometry. The (2), (3), (4) and (5) modes of resonance are sufficient for the purpose of the determination of the full set of complex elastic, dielectric and piezoelectric coefficients of piezoceramics, a 6mm symmetry material. This work presents the results of the FEA modeling of a thin plate based on the characterization of a commercial ceramic. The comparison of the experimental resonance spectra and the FEA results obtained for elastically, dielectrically and piezoelectrically homogeneous samples is presented and discussed. The complex characterization for the first time of the shear mode of a new lead-free piezoceramic is also shown.This work was carried out under the projects PIRAMID (G5RD-CT-2001-00456) of the GROWTH Program of the EC and MAT 2001-4819-E, MAT2002-00463 and the Ramon y Cajal Program, of the Spanish CICyT, and has benefited from the synergy provided by the POlar ELEtroCERamics, POLECER, (G5RT-CT2001-05024) Thematic Network of the EC.Peer reviewe

    Cyclooxygenases and prostaglandin E(2 )receptors in growth plate chondrocytes in vitro and in situ – prostaglandin E(2 )dependent proliferation of growth plate chondrocytes

    Get PDF
    Prostaglandin E(2 )(PGE(2)) plays an important role in bone development and metabolism. To interfere therapeutically in the PGE(2 )pathway, however, knowledge about the involved enzymes (cyclooxygenases) and receptors (PGE(2 )receptors) is essential. We therefore examined the production of PGE(2 )in cultured growth plate chondrocytes in vitro and the effects of exogenously added PGE(2 )on cell proliferation. Furthermore, we analysed the expression and spatial distribution of cyclooxygenase (COX)-1 and COX-2 and PGE(2 )receptor types EP1, EP2, EP3 and EP4 in the growth plate in situ and in vitro. PGE(2 )synthesis was determined by mass spectrometry, cell proliferation by DNA [(3)H]-thymidine incorporation, mRNA expression of cyclooxygenases and EP receptors by RT-PCR on cultured cells and in homogenized growth plates. To determine cellular expression, frozen sections of rat tibial growth plate and primary chondrocyte cultures were stained using immunohistochemistry with polyclonal antibodies directed towards COX-1, COX-2, EP1, EP2, EP3, and EP4. Cultured growth plate chondrocytes transiently secreted PGE(2 )into the culture medium. Although both enzymes were expressed in chondrocytes in vitro and in vivo, it appears that mainly COX-2 contributed to PGE(2)-dependent proliferation. Exogenously added PGE(2 )stimulated DNA synthesis in a dose-dependent fashion and gave a bell-shaped curve with a maximum at 10(-8 )M. The EP1/EP3 specific agonist sulprostone and the EP1-selective agonist ONO-D1-004 increased DNA synthesis. The effect of PGE(2 )was suppressed by ONO-8711. The expression of EP1, EP2, EP3, and EP4 receptors in situ and in vitro was observed; EP2 was homogenously expressed in all zones of the growth plate in situ, whereas EP1 expression was inhomogenous, with spared cells in the reserve zone. In cultured cells these four receptors were expressed in a subset of cells only. The most intense staining for the EP1 receptor was found in polygonal cells surrounded by matrix. Expression of receptor protein for EP3 and EP4 was observed also in rat growth plates. In cultured chrondrocytes, however, only weak expression of EP3 and EP4 receptor was detected. We suggest that in growth plate chondrocytes, COX-2 is responsible for PGE(2 )release, which stimulates cell proliferation via the EP1 receptor
    corecore