60 research outputs found

    Evidence for Widespread Genomic Methylation in the Migratory Locust, Locusta migratoria (Orthoptera: Acrididae)

    Get PDF
    The importance of DNA methylation in mammalian and plant systems is well established. In recent years there has been renewed interest in DNA methylation in insects. Accumulating evidence, both from mammals and insects, points towards an emerging role for DNA methylation in the regulation of phenotypic plasticity. The migratory locust (Locusta migratoria) is a model organism for the study of phenotypic plasticity. Despite this, there is little information available about the degree to which the genome is methylated in this species and genes encoding methylation machinery have not been previously identified. We therefore undertook an initial investigation to establish the presence of a functional DNA methylation system in L. migratoria. We found that the migratory locust possesses genes that putatively encode methylation machinery (DNA methyltransferases and a methyl-binding domain protein) and exhibits genomic methylation, some of which appears to be localised to repetitive regions of the genome. We have also identified a distinct group of genes within the L. migratoria genome that appear to have been historically methylated and show some possible functional differentiation. These results will facilitate more detailed research into the functional significance of DNA methylation in locusts

    Phased diploid genome assembly with single-molecule real-time sequencing

    Get PDF
    While genome assembly projects have been successful in many haploid and inbred species, the assembly of noninbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences

    Metagenomics: DNA sequencing of environmental samples

    Full text link
    While genomics has classically focused on pure, easy-to-obtain samples, such as microbes that grow readily in culture or large animals and plants, these organisms represent but a fraction of the living or once living organisms of interest. Many species are difficult to study in isolation, because they fail to grow in laboratory culture, depend on other organisms for critical processes, or have become extinct. DNA sequence-based methods circumvent these obstacles, as DNA can be directly isolated from live or dead cells in a variety of contexts, and have led to the emergence of a new field referred to as metagenomics

    Sleep and respiratory physiology in adults

    No full text
    Respiration during sleep is determined by metabolic demand; respiratory drive is determined by a central respiratory generator. Changes in pharyngeal dilator muscle tone resulting in increased upper airway resistance and collapsibility contribute to hypoventilation. Relative hypotonia of respiratory muscles, body posture changes, and altered ventilatory control result in additional physiologic changes contributing to hypoventilation. This article reviews mechanisms of central control of respiration and normal upper and lower airway physiology. Understanding sleep-related changes in respiratory physiology will help in developing new therapies to prevent hypoventilation in susceptible populations. Β© 2014 Elsevier Inc

    Changes in base composition bias of nuclear and mitochondrial genes in lice (Insecta: Psocodea).

    Get PDF
    While it is well known that changes in the general processes of molecular evolution have occurred on a variety of timescales, the mechanisms underlying these changes are less well understood. Parasitic lice ("Phthiraptera") and their close relatives (infraorder Nanopsocetae of the insect order Psocodea) are a group of insects well known for their unusual features of molecular evolution. We examined changes in base composition across parasitic lice and bark lice. We identified substantial differences in percent GC content between the clade comprising parasitic lice plus closely related bark lice (=Nanopsocetae) versus all other bark lice. These changes occurred for both nuclear and mitochondrial protein coding and ribosomal RNA genes, often in the same direction. To evaluate whether correlations in base composition change also occurred within lineages, we used phylogenetically controlled comparisons, and in this case few significant correlations were identified. Examining more constrained sites (first/second codon positions and rRNA) revealed that, in comparison to the other bark lice, the GC content of parasitic lice and close relatives tended towards 50 % either up from less than 50 % GC or down from greater than 50 % GC. In contrast, less constrained sites (third codon positions) in both nuclear and mitochondrial genes showed less of a consistent change of base composition in parasitic lice and very close relatives. We conclude that relaxed selection on this group of insects is a potential explanation of the change in base composition for both mitochondrial and nuclear genes, which could lead to nucleotide frequencies closer to random expectation (i.e., 50 % GC) in the absence of any mutation bias. Evidence suggests this relaxed selection arose once in the non-parasitic common ancestor of Phthiraptera + Nanopsocetae and is not directly related to the evolution of the parasitism in lice
    • …
    corecore