211 research outputs found

    Increased prevalence of potential right-to-left shunting in children with sickle cell anaemia and stroke

    Get PDF
    'Paradoxical' embolization via intracardiac or intrapulmonary right-to-left shunts (RLS) is an established cause of stroke. Hypercoagulable states and increased right heart pressure, which both occur in sickle cell anaemia (SCA), predispose to paradoxical embolization. We hypothesized that children with SCA and overt stroke (SCA + stroke) have an increased prevalence of potential RLS. We performed contrasted transthoracic echocardiograms on 147 children (aged 2-19 years) with SCA + stroke) mean age 12·7 ± 4·8 years, 54·4% male) and a control group without SCA or stroke (n = 123; mean age 12·1 ± 4·9 years, 53·3% male). RLS was defined as any potential RLS detected by any method, including intrapulmonary shunting. Echocardiograms were masked and adjudicated centrally. The prevalence of potential RLS was significantly higher in the SCA+stroke group than controls (45·6% vs. 23·6%, P < 0·001). The odds ratio for potential RLS in the SCA + stroke group was 2·7 (95% confidence interval: 1·6-4·6) vs controls. In post hoc analyses, the SCA + stroke group had a higher prevalence of intrapulmonary (23·8% vs. 5·7%, P < 0·001) but not intracardiac shunting (21·8% vs. 18·7%, P = 0·533). SCA patients with potential RLS were more likely to report headache at stroke onset than those without. Intrapulmonary and intracardiac shunting may be an overlooked, independent and potentially modifiable risk factor for stroke in SCA

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease

    End points for sickle cell disease clinical trials: patient-reported outcomes, pain, and the brain

    Get PDF
    To address the global burden of sickle cell disease (SCD) and the need for novel therapies, the American Society of Hematology partnered with the US Food and Drug Administration to engage the work of 7 panels of clinicians, investigators, and patients to develop consensus recommendations for clinical trial end points. The panels conducted their work through literature reviews, assessment of available evidence, and expert judgment focusing on end points related to: patient-reported outcomes (PROs), pain (non-PROs), the brain, end-organ considerations, biomarkers, measurement of cure, and low-resource settings. This article presents the findings and recommendations of the PROs, pain, and brain panels, as well as relevant findings and recommendations from the biomarkers panel. The panels identify end points, where there were supporting data, to use in clinical trials of SCD. In addition, the panels discuss where further research is needed to support the development and validation of additional clinical trial end points

    IL-17RA Signaling Amplifies Antibody-Induced Arthritis

    Get PDF
    Objective: To investigate the role of IL-17RA signaling in the effector phase of inflammatory arthritis using the K/BxN serumtransfer model. Methods: Wild-type and Il17ra 2/2 mice were injected with serum isolated from arthritic K/BxN mice and their clinical score was recorded daily. Mice were also harvested on days 12 and 21 and ankles were analyzed for cytokine and chemokine mRNA expression by qPCR on day 12 and for bone and cartilage erosions by histology on day 21, respectively. The induction of cytokine and chemokine expression levels by IL-17A in synovial-like fibroblasts was also analyzed using qPCR. Results: Il17ra 2/2 mice were partially protected from clinical signs of arthritis and had markedly fewer cartilage and bone erosions. The expression of several pro-inflammatory mediators, including the chemokines KC/CXCL1, MIP-2/CXCL2, LIX/ CXCL5 MIP-1c/CCL9, MCP-3/CCL7, MIP-3a/CCL20, the cytokines IL-1b, IL-6, RANKL and the matrix metalloproteinases MMP2, MMP3, and MMP13 were decreased in the ankles of Il17ra 2/2 mice compared to wild-type mice. Many of these proinflammatory genes attenuated in the ankles of Il17ra 2/2 mice were shown to be directly induced by IL-17A in synovial fibroblasts in vitro. Conclusions: IL-17RA signaling plays a role as an amplifier of the effector phase of inflammatory arthritis. This effect is likel

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Realising the right to data portability for the domestic Internet of Things

    Get PDF
    There is an increasing role for the IT design community to play in regulation of emerging IT. Article 25 of the EU General Data Protection Regulation (GDPR) 2016 puts this on a strict legal basis by establishing the need for information privacy by design and default (PbD) for personal data-driven technologies. Against this backdrop, we examine legal, commercial and technical perspectives around the newly created legal right to data portability (RTDP) in GDPR. We are motivated by a pressing need to address regulatory challenges stemming from the Internet of Things (IoT). We need to find channels to support the protection of these new legal rights for users in practice. In Part I we introduce the internet of things and information PbD in more detail. We briefly consider regulatory challenges posed by the IoT and the nature and practical challenges surrounding the regulatory response of information privacy by design. In Part II, we look in depth at the legal nature of the RTDP, determining what it requires from IT designers in practice but also limitations on the right and how it relates to IoT. In Part III we focus on technical approaches that can support the realisation of the right. We consider the state of the art in data management architectures, tools and platforms that can provide portability, increased transparency and user control over the data flows. In Part IV, we bring our perspectives together to reflect on the technical, legal and business barriers and opportunities that will shape the implementation of the RTDP in practice, and how the relationships may shape emerging IoT innovation and business models. We finish with brief conclusions about the future for the RTDP and PbD in the IoT

    Enhancement of Cell Membrane Invaginations, Vesiculation and Uptake of Macromolecules by Protonation of the Cell Surface

    Get PDF
    The different pathways of endocytosis share an initial step involving local inward curvature of the cell’s lipid bilayer. It has been shown that to generate membrane curvature, proteins or lipids enforce transversal asymmetry of the plasma membrane. Thus it emerges as a general phenomenon that transversal membrane asymmetry is the common required element for the formation of membrane curvature. The present study demonstrates that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesiculation accompanied by efficient uptake of macromolecules (Dextran-FITC, 70 kD), relative to the constitutive one. The insensitivity of proton induced uptake to inhibiting treatments and agents of the known endocytic pathways suggests the entry of macromolecules to proceeds via a yet undefined route. This is in line with the fact that neither ATP depletion, nor the lowering of temperature, abolishes the uptake process. In addition, fusion mechanism such as associated with low pH uptake of toxins and viral proteins can be disregarded by employing the polysaccharide dextran as the uptake molecule. The proton induced uptake increases linearly in the extracellular pH range of 6.5 to 4.5, and possesses a steep increase at the range of 4> pH>3, reaching a plateau at pH≤3. The kinetics of the uptake implies that the induced vesicles release their content to the cytosol and undergo rapid recycling to the plasma membrane. We suggest that protonation of the cell’s surface induces local charge asymmetries across the cell membrane bilayer, inducing inward curvature of the cell membrane and consequent vesiculation and uptake

    Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells

    Get PDF
    Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC) and pulmonary artery (RPAEC) endothelium endocytosed Alexa488-labeled albumin in a saturable, temperature-sensitive mode and internalization resulted in co-localization by fluorescence microscopy with cholera B toxin and caveolin-1. Although siRNA to caveolin-1 (cav-1) in RPAEC significantly inhibited albumin uptake, a remnant portion of albumin uptake was cav-1-independent, suggesting alternative pathways for albumin uptake. Thus, we isolated and cultured mouse lung endothelial cells (MLEC) from wild type and cav-1-/- mice and noted that ∼ 65% of albumin uptake, as determined by confocal imaging or live cell total internal reflectance fluorescence microscopy (TIRF), persisted in total absence of cav-1. Uptake of colloidal gold labeled albumin was evaluated by electron microscopy and demonstrated that albumin uptake in MLEC from cav-1-/- mice was through caveolae-independent pathway(s) including clathrin-coated pits that resulted in endosomal accumulation of albumin. Finally, we noted that albumin uptake in RPMEC was in part sensitive to pharmacological agents (amiloride [sodium transport inhibitor], Gö6976 [protein kinase C inhibitor], and cytochalasin D [inhibitor of actin polymerization]) consistent with a macropinocytosis-like process. The amiloride sensitivity accounting for macropinocytosis also exists in albumin uptake by both wild type and cav-1 -/- MLEC. We conclude from these studies that in addition to the well described caveolar-dependent pulmonary endothelial cell endocytosis of albumin, a portion of overall uptake in pulmonary endothelial cells is cav-1 insensitive and appears to involve clathrin-mediated endocytosis and macropinocytosis-like process. © 2013 Li et al
    corecore