1,506 research outputs found

    P104 White coat hypertension is associated with increased small vessel disease in the brain

    Get PDF
    Objective: Small vessel disease, measured by brain white matter hyperintensity (WMH), is associated with increased stroke risk and cognitive impairment. This study aimed to explore the relationship between WMH on computerised tomography (CT) and white coat hypertension (WCH) in patients with recent transient ischaemic attack (TIA) or lacunar stroke (LS). Methods: Ninety-six patients recruited for the ASIST trial (Arterial Stiffness in Lacunar Stroke and TIA) underwent measurement of clinic blood pressure (BP) and ambulatory BP monitoring (APBM) within two weeks of TIA or LS. Patients were grouped by BP phenotypes. Twenty-three patients had normotension (clinic BP 140/90 mmHg and day-time ABPM <135/85 mmHg). CT brain images were scored for WMH using the four-point Fazekas visual rating scale. Patients were grouped into no-mild WMH (scores 0–1) or moderate-severe (scores 2–3) groups. The relationship between BP and WMH was explored with chi-square and logistic regression accounting for known cardiovascular risk factors (age, gender, smoking, diabetes and hyperlipidaemia). Results: 44% of WCH patients had moderate-severe WMH compared to 17% of normotensives (p = 0.047). Logistical regression incorporating WCH as the independent factor and cardiovascular risk factors as independent variables showed WCH to be the only independent significant factor contributing to WMH (p = 0.024). Conclusion: Patients with WCH were more likely to have moderate-severe WMH on CT brain than normotensives. WCH was associated with increased WMH, independent of other cardiovascular risk factors. This study suggests that WCH is associated with increased small vessel disease in the brain and may benefit from treatment

    Self-avoiding walks on a bilayer Bethe lattice

    Get PDF
    We propose and study a model of polymer chains in a bilayer. Each chain is confined in one of the layers and polymer bonds on first neighbor edges in different layers interact. We also define and comment results for a model with interactions between monomers on first neighbor sites of different layers. The thermodynamic properties of the model are studied in the grand-canonical formalism and both layers are considered to be Cayley trees. In the core region of the trees, which we may call a bilayer Bethe lattice, we find a very rich phase diagram in the parameter space defined by the two activities of monomers and the Boltzmann factor associated to the interlayer interaction between bonds or monomers. Beside critical and coexistence surfaces, there are tricritical, bicritical and critical endpoint lines, as well as higher order multicritical points.Comment: 21 pages, 10 figures. Journal of Statistical Mechanics: Theory and Experiment (in press

    Hematological and Genetic Predictors of Daytime Hemoglobin Saturation in Tanzanian Children with and without Sickle Cell Anemia.

    Get PDF
    Low hemoglobin oxygen saturation (SpO2) is common in Sickle Cell Anemia (SCA) and associated with complications including stroke, although determinants remain unknown. We investigated potential hematological, genetic, and nutritional predictors of daytime SpO2 in Tanzanian children with SCA and compared them with non-SCA controls. Steady-state resting pulse oximetry, full blood count, transferrin saturation, and clinical chemistry were measured. Median daytime SpO2 was 97% (IQ range 94-99%) in SCA (N = 458), lower (P < 0.0001) than non-SCA (median 99%, IQ range 98-100%; N = 394). Within SCA, associations with SpO2 were observed for hematological variables, transferrin saturation, body-mass-index z-score, hemoglobin F (HbF%), genotypes, and hemolytic markers; mean cell hemoglobin (MCH) explained most variability (P < 0.001, Adj r (2) = 0.09). In non-SCA only age correlated with SpO2. α-thalassemia 3.7 deletion highly correlated with decreased MCH (Pearson correlation coefficient -0.60, P < 0.0001). In multivariable models, lower SpO2 correlated with higher MCH (β-coefficient -0.32, P < 0.001) or with decreased copies of α-thalassemia 3.7 deletion (β-coefficient 1.1, P < 0.001), and independently in both models with lower HbF% (β-coefficient 0.15, P < 0.001) and Glucose-6-Phosphate Dehydrogenase genotype (β-coefficient -1.12, P = 0.012). This study provides evidence to support the hypothesis that effects on red cell rheology are important in determining SpO2 in children with SCA. Potential mechanisms and implications are discussed

    Non-destructive monitoring of viability in an ex vivo organ culture model of osteochondral tissue

    Get PDF
    Organ culture is an increasingly important tool in research, with advantages over monolayer cell culture due to the inherent natural environment of tissues. Successful organ cultures must retain cell viability. The aim of this study was to produce viable and non-viable osteochondral organ cultures to assess the accumulation of soluble markers in the conditioned medium for predicting tissue viability. Porcine femoral osteochondral plugs were cultured for 20 days, with the addition on day 6, of Triton X-100 (to induce necrosis), camptothecin (to induce apoptosis) or no toxic additives. Tissue viability was assessed by the tissue destructive XTT (sodium 3'-[1-[(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene-sulfonic acid hydrate) assay method and LIVE/DEAD® staining of the cartilage at days 0, 6 and 20. Tissue structure was assessed by histological evaluation using haematoxylin & eosin and safranin O. Conditioned medium was assessed every 3-4 days for glucose depletion, and levels of lactate dehydrogenase (LDH), alkaline phosphatase (AP), glycosaminoglycans (GAGs), and matrix metalloproteinase (MMP)-2 and MMP-9. Necrotic cultures immediately showed a reduction in glucose consumption, and an immediate increase in LDH, GAG, MMP-2 and MMP-9 levels. Apoptotic cultures showed a delayed reduction in glucose consumption and delayed increase in LDH, a small rise in MMP-2 and MMP-9, but no significant effect on GAGs released into the conditioned medium. The data showed that tissue viability could be monitored by assessing the conditioned medium for the aforementioned markers, negating the need for tissue destructive assays. Physiologically relevant whole- or part-joint organ culture models, necessary for research and pre-clinical assessment of therapies, could be monitored this way, reducing the need to sacrifice tissues to determine viability, and hence reducing the sample numbers necessary

    Quantitative susceptibility mapping (QSM) and R2* of silent cerebral infarcts in sickle cell anemia

    Get PDF
    Silent cerebral infarction (SCI) is the most commonly reported radiological abnormality in patients with sickle cell anemia (SCA) and is associated with future clinical stroke risk. To date, there have been few histological and quantitative MRI studies of SCI and multiple radiological definitions exist. As a result, the tissue characteristics and composition of SCI remain elusive. The objective of this work was therefore to investigate the composition of segmented SCI lesions using quantitative MRI for R 2 * and quantitative magnetic susceptibility mapping (QSM). 211 SCI lesions were segmented from 32 participants with SCA and 6 controls. SCI were segmented according to two definitions (FLAIR+/-T1w-based threshold) using a semi-automated pipeline. Magnetic susceptibility (χ) and R 2 * maps were calculated from a multi-echo gradient echo sequence and mean SCI values were compared to an equivalent region of interest in normal appearing white matter (NAWM). SCI χ and R 2 * were investigated as a function of SCI definition, patient demographics, anatomical location, and cognition. Compared to NAWM, SCI were significantly less diamagnetic (χ = -0.0067 ppm vs. -0.0153 ppm, p < 0.001) and had significantly lower R 2 * (16.7 s-1 vs. 19.2 s-1, p < 0.001). SCI definition had a significant effect on the mean SCI χ and R 2 * , with lesions becoming significantly less diamagnetic and having significantly lower R 2 * after the application of a more stringent T1w-based threshold. SCI-NAWM R 2 * decrease was significantly greater in patients with SCA compared with controls (-2.84 s-1 vs. -0.64 s-1, p < 0.0001). No significant association was observed between mean SCI-NAWM χ or R2* differences and subject age, lesion anatomical location, or cognition. The increased χ and decreased R 2 * in SCI relative to NAWM observed in both patients and controls is indicative of lower myelin or increased water content within the segmented lesions. The significant SCI-NAWM R 2 * differences observed between SCI in patients with SCA and controls suggests there may be differences in tissue composition relative to NAWM in SCI in the two populations. Quantitative MRI techniques such as QSM and R 2 * mapping can be used to enhance our understanding of the pathophysiology and composition of SCI in patients with SCA as well as controls

    Soil quality after eight years under high tunnels

    Get PDF
    The sustainability of soil quality under high tunnels will influence management of high tunnels currently in use and grower decisions regarding design and management of new high tunnels to be constructed. Soil quality was quantified using measures of soil pH, salinity, total carbon, and particulate organic matter (POM) carbon in a silt loam soil that had been in vegetable production under high tunnels at the research station in Olathe, KS, for eight years. Soil under high tunnels was compared with that in adjacent fields in both a conventional and an organic management system. The eight-year presence of high tunnels under the conventional management system resulted in increased soil pH and salinity but did not affect soil carbon. In the organic management system, high tunnels did not affect soil pH, increased soil salinity, and influenced soil carbon (C) pools with an increase in POM carbon. The increases in soil salinity were not enough to be detrimental to crops. These results indicate that soil quality was not adversely affected by eight years under stationary high tunnels managed with conventionally or organically produced vegetable crops

    A combined geomorphological and geophysical approach to characterising relict landslide hazard on the Jurassic Escarpments of Great Britain

    Get PDF
    The Jurassic Escarpment in the North York Moors in Northern Britain has a high density of deep-seated relict landslides but their regional hazard is poorly understood due to a lack of detailed case studies. Investigation of a typical relict landslide at Great Fryup Dale suggests that the crop of the Whitby Mudstone Formation is highly susceptible to landslide hazards. The mudstone lithologies along the Escarpment form large multiple rotational failures which break down at an accelerated rate during wetter climates and degrade into extensive frontal mudflows. Geomorphological mapping, high resolution LiDAR imagery, boreholes, and geophysical ERT surveys are deployed in a combined approach to delimit internal architecture of the landslide. Cross-sections developed from these data indicate that the main movement displaced a bedrock volume of c. 1 × 107 m3 with a maximum depth of rupture of c. 50 m. The mode of failure is strongly controlled by lithology, bedding, joint pattern, and rate of lateral unloading. Dating of buried peats using the AMS method suggests that the 10 m thick frontal mudflow complex was last active in the Late Holocene, after c. 2270 ± 30 calendar years BP. Geomorphic mapping and dating work indicates that the landslide is dormant, but slope stability modelling suggests that the slope is less stable than previously assumed; implying that this and other similar landslides in Britain may become more susceptible to reactivation or extension during future wetter climatic phases. This study shows the value of a multi-technique approach for landslide hazard assessment and to enhance national landslide inventories
    • …
    corecore