7 research outputs found

    Effect of excitatory and inhibitory agents and a glial inhibitor on optically-recorded primary-afferent excitation

    Get PDF
    The effects of GABA, excitatory amino-acid receptors antagonists and a glial metabolism inhibitor on primary-afferent excitation in the spinal dorsal horn were studied by imaging the presynaptic excitation of high-threshold afferents in cord slices from young rats with a voltage-sensitive dye. Primary afferent fibers and terminals were anterogradely labeled with a voltage-sensitive dye from the dorsal root attached to the spinal cord slice. Single-pulse stimulation of C fiber-activating strength to the dorsal root elicited compound action potential-like optical responses in the superficial dorsal horn. The evoked presynaptic excitation was increased by the GABAA receptor antagonists picrotoxin and bicuculline, by glutamate receptor antagonists D-AP5 and CNQX, and by the glial metabolism inhibitor mono-fluoroacetic acid (MFA). The increase in presynaptic excitation by picrotoxin was inhibited in the presence of D-AP5, CNQX and MFA. Presynaptic modulation in the central terminal of fine primary afferents by excitatory and inhibitory amino acids may represent a mechanism that regulates the transmission of pain

    Contribution of microglia and astrocytes to the central sensitization, inflammatory and neuropathic pain in the juvenile rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of pain after peripheral nerve and tissue injury involves not only neuronal pathways but also immune cells and glia. Central sensitization is thought to be a mechanism for such persistent pain, and ATP involves in the process. We examined the contribution of glia to neuronal excitation in the juvenile rat spinal dorsal horn which is subjected to neuropathic and inflammatory pain.</p> <p>Results</p> <p>In rats subjected to neuropathic pain, immunoreactivity for the microglial marker OX42 was markedly increased. In contrast, in rats subjected to inflammatory pain, immunoreactivity for the astrocyte marker glial fibrillary acidic protein was increased slightly. Optically-recorded neuronal excitation induced by single-pulse stimulation to the dorsal root was augmented in rats subjected to neuropathic and inflammatory pain compared to control rats. The bath application of a glial inhibitor minocycline and a p38 mitogen-activated protein kinase inhibitor SB203580 inhibited the neuronal excitation in rats subjected to neuropathic pain. A specific P2X<sub>1,2,3,4</sub> antagonist TNP-ATP largely inhibited the neuronal excitation only in rats subjected to neuropathic pain rats. In contrast, an astroglial toxin L-alpha-aminoadipate, a gap junction blocker carbenoxolone and c-Jun N-terminal kinase inhibitor SP600125 inhibited the neuronal excitation only in rats subjected to inflammatory pain. A greater number of cells in spinal cord slices from rats subjected to neuropathic pain showed Ca<sup>2+</sup> signaling in response to puff application of ATP. This Ca<sup>2+</sup> signaling was inhibited by minocycline and TNP-ATP.</p> <p>Conclusions</p> <p>These results directly support the notion that microglia is more involved in neuropathic pain and astrocyte in inflammatory pain.</p

    Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain

    No full text
    Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocapsular amygdala (PB-CeLC) glutamatergic synapses at axo-somatic and punctate locations on protein kinase C δ -positive (PKCδ+) neurons. Deletion of GluD1 impairs excitatory neurotransmission at the PB-CeLC synapses. In inflammatory and neuropathic pain models, GluD1 and its partner cerebellin 1 (Cbln1) are downregulated while AMPA receptor is upregulated. A single infusion of recombinant Cbln1 into the central amygdala led to sustained mitigation of behavioral pain parameters and normalized hyperexcitability of central amygdala neurons. Cbln2 was ineffective under these conditions and the effect of Cbln1 was antagonized by GluD1 ligand D-serine. The behavioral effect of Cbln1 was GluD1-dependent and showed lateralization to the right central amygdala. Selective ablation of GluD1 from the central amygdala or injection of Cbln1 into the central amygdala in normal animals led to changes in averse and fear-learning behaviors. Thus, GluD1-Cbln1 signaling in the central amygdala is a teaching signal for aversive behavior but its sustained dysregulation underlies persistence of pain. Significance statement: Chronic pain is a debilitating condition which involves synaptic dysfunction, but the underlying mechanisms are not fully understood. Our studies identify a novel mechanism involving structural synaptic changes in the amygdala caused by impaired GluD1-Cbln1 signaling in inflammatory and neuropathic pain behaviors. We also identify a novel means to mitigate pain in these conditions using protein therapeutics

    Role of the Prefrontal Cortex in Pain Processing

    No full text
    corecore