309 research outputs found
Evidence of stochastic resonance in the mating behavior of Nezara viridula (L.)
We investigate the role of the noise in the mating behavior between
individuals of Nezara viridula (L.), by analyzing the temporal and spectral
features of the non-pulsed type female calling song emitted by single
individuals. We have measured the threshold level for the signal detection, by
performing experiments with the calling signal at different intensities and
analyzing the insect response by directionality tests performed on a group of
male individuals. By using a sub-threshold signal and an acoustic Gaussian
noise source, we have investigated the insect response for different levels of
noise, finding behavioral activation for suitable noise intensities. In
particular, the percentage of insects which react to the sub-threshold signal,
shows a non-monotonic behavior, characterized by the presence of a maximum, for
increasing levels of the noise intensity. This constructive interplay between
external noise and calling signal is the signature of the non-dynamical
stochastic resonance phenomenon. Finally, we describe the behavioral activation
statistics by a soft threshold model which shows stochastic resonance. We find
that the maximum of the ensemble average of the input-output cross-correlation
occurs at a value of the noise intensity very close to that for which the
behavioral response has a maximum.Comment: 6 pages, 4 figures, to appear in EPJ B (2008
Thermal Tolerance of the Coffee Berry Borer Hypothenemus hampei: Predictions of Climate Change Impact on a Tropical Insect Pest
Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer , Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35°C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20–30°C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32°C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1–2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1°C rise in thermal optimum (Topt.), the maximum intrinsic rate of increase (rmax) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2
- …