179 research outputs found
Skew Divided Difference Operators and Schubert Polynomials
We study an action of the skew divided difference operators on the Schubert polynomials and give an explicit formula for structural constants for the Schubert polynomials in terms of certain weighted paths in the Bruhat order on the symmetric group. We also prove that, under certain assumptions, the skew divided difference operators transform the Schubert polynomials into polynomials with positive integer coefficients
Versal deformations of a Dirac type differential operator
If we are given a smooth differential operator in the variable its normal form, as is well known, is the simplest form
obtainable by means of the \mbox{Diff}(S^1)-group action on the space of all
such operators. A versal deformation of this operator is a normal form for some
parametric infinitesimal family including the operator. Our study is devoted to
analysis of versal deformations of a Dirac type differential operator using the
theory of induced \mbox{Diff}(S^1)-actions endowed with centrally extended
Lie-Poisson brackets. After constructing a general expression for tranversal
deformations of a Dirac type differential operator, we interpret it via the
Lie-algebraic theory of induced \mbox{Diff}(S^1)-actions on a special Poisson
manifold and determine its generic moment mapping. Using a Marsden-Weinstein
reduction with respect to certain Casimir generated distributions, we describe
a wide class of versally deformed Dirac type differential operators depending
on complex parameters
Analytic Bethe Ansatz for Fundamental Representations of Yangians
We study the analytic Bethe ansatz in solvable vertex models associated with
the Yangian or its quantum affine analogue for and . Eigenvalue formulas are proposed for the transfer matrices
related to all the fundamental representations of . Under the Bethe
ansatz equation, we explicitly prove that they are pole-free, a crucial
property in the ansatz. Conjectures are also given on higher representation
cases by applying the -system, the transfer matrix functional relations
proposed recently. The eigenvalues are neatly described in terms of Yangian
analogues of the semi-standard Young tableaux.Comment: 45 pages, Plain Te
Separation of variables for the quantum SL(2,R) spin chain
We construct representation of the Separated Variables (SoV) for the quantum
SL(2,R) Heisenberg closed spin chain and obtain the integral representation for
the eigenfunctions of the model. We calculate explicitly the Sklyanin measure
defining the scalar product in the SoV representation and demonstrate that the
language of Feynman diagrams is extremely useful in establishing various
properties of the model. The kernel of the unitary transformation to the SoV
representation is described by the same "pyramid diagram" as appeared before in
the SoV representation for the SL(2,C) spin magnet. We argue that this kernel
is given by the product of the Baxter Q-operators projected onto a special
reference state.Comment: 26 pages, Latex style, 9 figures. References corrected, minor
stylistic changes, version to be publishe
Dilogarithm Identities in Conformal Field Theory and Group Homology
Recently, Rogers' dilogarithm identities have attracted much attention in the
setting of conformal field theory as well as lattice model calculations. One of
the connecting threads is an identity of Richmond-Szekeres that appeared in the
computation of central charges in conformal field theory. We show that the
Richmond-Szekeres identity and its extension by Kirillov-Reshetikhin can be
interpreted as a lift of a generator of the third integral homology of a finite
cyclic subgroup sitting inside the projective special linear group of all real matrices viewed as a {\it discrete} group. This connection
allows us to clarify a few of the assertions and conjectures stated in the work
of Nahm-Recknagel-Terhoven concerning the role of algebraic -theory and
Thurston's program on hyperbolic 3-manifolds. Specifically, it is not related
to hyperbolic 3-manifolds as suggested but is more appropriately related to the
group manifold of the universal covering group of the projective special linear
group of all real matrices viewed as a topological group. This
also resolves the weaker version of the conjecture as formulated by Kirillov.
We end with the summary of a number of open conjectures on the mathematical
side.Comment: 20 pages, 2 figures not include
Automorphism Modular Invariants of Current Algebras
We consider those two-dimensional rational conformal field theories (RCFTs)
whose chiral algebras, when maximally extended, are isomorphic to the current
algebra formed from some affine non-twisted Kac--Moody algebra at fixed level.
In this case the partition function is specified by an automorphism of the
fusion ring and corresponding symmetry of the Kac--Peterson modular matrices.
We classify all such partition functions when the underlying finite-dimensional
Lie algebra is simple. This gives all possible spectra for this class of RCFTs.
While accomplishing this, we also find the primary fields with second smallest
quantum dimension.Comment: 32 pages, plain Te
Can fusion coefficients be calculated from the depth rule ?
The depth rule is a level truncation of tensor product coefficients expected
to be sufficient for the evaluation of fusion coefficients. We reformulate the
depth rule in a precise way, and show how, in principle, it can be used to
calculate fusion coefficients. However, we argue that the computation of the
depth itself, in terms of which the constraints on tensor product coefficients
is formulated, is problematic. Indeed, the elements of the basis of states
convenient for calculating tensor product coefficients do not have a
well-defined depth! We proceed by showing how one can calculate the depth in an
`approximate' way and derive accurate lower bounds for the minimum level at
which a coupling appears. It turns out that this method yields exact results
for and constitutes an efficient and simple algorithm for
computing fusion coefficients.Comment: 27 page
Q-systems, Heaps, Paths and Cluster Positivity
We consider the cluster algebra associated to the -system for as a
tool for relating -system solutions to all possible sets of initial data. We
show that the conserved quantities of the -system are partition functions
for hard particles on particular target graphs with weights, which are
determined by the choice of initial data. This allows us to interpret the
simplest solutions of the Q-system as generating functions for Viennot's heaps
on these target graphs, and equivalently as generating functions of weighted
paths on suitable dual target graphs. The generating functions take the form of
finite continued fractions. In this setting, the cluster mutations correspond
to local rearrangements of the fractions which leave their final value
unchanged. Finally, the general solutions of the -system are interpreted as
partition functions for strongly non-intersecting families of lattice paths on
target lattices. This expresses all cluster variables as manifestly positive
Laurent polynomials of any initial data, thus proving the cluster positivity
conjecture for the -system. We also give an alternative formulation in
terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure
Superpotentials for M-theory on a G_2 holonomy manifold and Triality symmetry
For -theory on the holonomy manifold given by the cone on {\bf
S^3}\x {\bf S^3} we consider the superpotential generated by membrane
instantons and study its transformations properties, especially under monodromy
transformations and triality symmetry. We find that the latter symmetry is,
essentially, even a symmetry of the superpotential. As in Seiberg/Witten
theory, where a flat bundle given by the periods of an universal elliptic curve
over the -plane occurs, here a flat bundle related to the Heisenberg group
appears and the relevant universal object over the moduli space is related to
hyperbolic geometry.Comment: 58 pages, latex; references adde
Combinatorics of generalized Bethe equations
A generalization of the Bethe ansatz equations is studied, where a scalar
two-particle S-matrix has several zeroes and poles in the complex plane, as
opposed to the ordinary single pole/zero case. For the repulsive case (no
complex roots), the main result is the enumeration of all distinct solutions to
the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial
interpretations of the Fuss-Catalan and related numbers are obtained. On the
one hand, they count regular orbits of the permutation group in certain factor
modules over Z^M, and on the other hand, they count integer points in certain
M-dimensional polytopes
- …