Recently, Rogers' dilogarithm identities have attracted much attention in the
setting of conformal field theory as well as lattice model calculations. One of
the connecting threads is an identity of Richmond-Szekeres that appeared in the
computation of central charges in conformal field theory. We show that the
Richmond-Szekeres identity and its extension by Kirillov-Reshetikhin can be
interpreted as a lift of a generator of the third integral homology of a finite
cyclic subgroup sitting inside the projective special linear group of all 2×2 real matrices viewed as a {\it discrete} group. This connection
allows us to clarify a few of the assertions and conjectures stated in the work
of Nahm-Recknagel-Terhoven concerning the role of algebraic K-theory and
Thurston's program on hyperbolic 3-manifolds. Specifically, it is not related
to hyperbolic 3-manifolds as suggested but is more appropriately related to the
group manifold of the universal covering group of the projective special linear
group of all 2×2 real matrices viewed as a topological group. This
also resolves the weaker version of the conjecture as formulated by Kirillov.
We end with the summary of a number of open conjectures on the mathematical
side.Comment: 20 pages, 2 figures not include