15 research outputs found

    Continuous PDE Dynamics Forecasting with Implicit Neural Representations

    Full text link
    Effective data-driven PDE forecasting methods often rely on fixed spatial and / or temporal discretizations. This raises limitations in real-world applications like weather prediction where flexible extrapolation at arbitrary spatiotemporal locations is required. We address this problem by introducing a new data-driven approach, DINo, that models a PDE's flow with continuous-time dynamics of spatially continuous functions. This is achieved by embedding spatial observations independently of their discretization via Implicit Neural Representations in a small latent space temporally driven by a learned ODE. This separate and flexible treatment of time and space makes DINo the first data-driven model to combine the following advantages. It extrapolates at arbitrary spatial and temporal locations; it can learn from sparse irregular grids or manifolds; at test time, it generalizes to new grids or resolutions. DINo outperforms alternative neural PDE forecasters in a variety of challenging generalization scenarios on representative PDE systems

    Conformal Robotic Stereolithography

    Get PDF
    Additive manufacturing by layerwise photopolymerization, commonly called stereolithography (SLA), is attractive due to its high resolution and diversity of materials chemistry. However, traditional SLA methods are restricted to planar substrates and planar layers that are perpendicular to a single-axis build direction. Here, we present a robotic system that is capable of maskless layerwise photopolymerization on curved surfaces, enabling production of large-area conformal patterns and the construction of conformal freeform objects. The system comprises an industrial six-axis robot and a custom-built maskless projector end effector. Use of the system involves creating a mesh representation of the freeform substrate, generation of a triangulated toolpath with curved layers that represents the target object to be printed, precision mounting of the substrate in the robot workspace, and robotic photopatterning of the target object by coordinated motion of the robot and substrate. We demonstrate printing of conformal photopatterns on spheres of various sizes, and construction of miniature three-dimensional objects on spheres without requiring support features. Improvement of the motion accuracy and development of freeform toolpaths would enable construction of polymer objects that surpass the size and support structure constraints imparted by traditional SLA systems.American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Institute of Mental Health (U.S.) (University of Michigan Microfluidics in Biomedical Sciences Training Program. 5T32-EB005582)Singapore-MIT Alliance for Research and Technology (SMART

    Généralisation hors-distribution en apprentissage profond : classification et prévision spatiotemporelle

    No full text
    L’apprentissage profond a émergé comme une approche puissante pour la modélisation de données statiques comme les images et, plus récemment, pour la modélisation de systèmes dynamiques comme ceux sous-jacents aux séries temporelles, aux vidéos ou aux phénomènes physiques. Cependant, les réseaux neuronaux ne généralisent pas bien en dehors de la distribution d’apprentissage, en d’autres termes, hors-distribution. Ceci limite le déploiement de l’apprentissage profond dans les systèmes autonomes ou les systèmes de production en ligne, qui sont confrontés à des données en constante évolution. Dans cette thèse, nous concevons de nouvelles stratégies d’apprentissage pour la généralisation hors-distribution. Celles-ci tiennent compte des défis spécifiques posés par deux tâches d’application principales, la classification de données statiques et la prévision de dynamiques spatiotemporelles. Les deux premières parties de cette thèse étudient la classification. Nous présentons d’abord comment utiliser des données d’entraînement en quantité limitée d’un domaine cible pour l’adaptation. Nous explorons ensuite comment généraliser à des domaines non observés sans accès à de telles données. La dernière partie de cette thèse présente diverses tâches de généralisation, spécifiques à la prévision spatiotemporelle.Deep learning has emerged as a powerful approach for modelling static data like images and more recently for modelling dynamical systems like those underlying times series, videos or physical phenomena. Yet, neural networks were observed to not generalize well outside the training distribution, in other words out-of-distribution. This lack of generalization limits the deployment of deep learning in autonomous systems or online production pipelines, which are faced with constantly evolving data. In this thesis, we design new strategies for out-of-distribution generalization. These strategies handle the specific challenges posed by two main application tasks, classification of static data and spatiotemporal dynamics forecasting. The first two parts of this thesis consider the classification problem. We first investigate how we can efficiently leverage some observed training data from a target domain for adaptation. We then explore how to generalize to unobserved domains without access to such data. The last part of this thesis handles various generalization problems specific to spatiotemporal forecasting

    Généralisation hors-distribution en apprentissage profond : classification et prévision spatiotemporelle

    No full text
    Deep learning has emerged as a powerful approach for modelling static data like images and more recently for modelling dynamical systems like those underlying times series, videos or physical phenomena. Yet, neural networks were observed to not generalize well outside the training distribution, in other words out-of-distribution. This lack of generalization limits the deployment of deep learning in autonomous systems or online production pipelines, which are faced with constantly evolving data. In this thesis, we design new strategies for out-of-distribution generalization. These strategies handle the specific challenges posed by two main application tasks, classification of static data and spatiotemporal dynamics forecasting. The first two parts of this thesis consider the classification problem. We first investigate how we can efficiently leverage some observed training data from a target domain for adaptation. We then explore how to generalize to unobserved domains without access to such data. The last part of this thesis handles various generalization problems specific to spatiotemporal forecasting.L’apprentissage profond a émergé comme une approche puissante pour la modélisation de données statiques comme les images et, plus récemment, pour la modélisation de systèmes dynamiques comme ceux sous-jacents aux séries temporelles, aux vidéos ou aux phénomènes physiques. Cependant, les réseaux neuronaux ne généralisent pas bien en dehors de la distribution d’apprentissage, en d’autres termes, hors-distribution. Ceci limite le déploiement de l’apprentissage profond dans les systèmes autonomes ou les systèmes de production en ligne, qui sont confrontés à des données en constante évolution. Dans cette thèse, nous concevons de nouvelles stratégies d’apprentissage pour la généralisation hors-distribution. Celles-ci tiennent compte des défis spécifiques posés par deux tâches d’application principales, la classification de données statiques et la prévision de dynamiques spatiotemporelles. Les deux premières parties de cette thèse étudient la classification. Nous présentons d’abord comment utiliser des données d’entraînement en quantité limitée d’un domaine cible pour l’adaptation. Nous explorons ensuite comment généraliser à des domaines non observés sans accès à de telles données. La dernière partie de cette thèse présente diverses tâches de généralisation, spécifiques à la prévision spatiotemporelle

    Model Checkpoints for DINo

    No full text
    The file contains the checkpoints of our model DINo for experiments shown in the paper. Please refer to the Git repository (link below) for the usage of these checkpoints.</p

    Diverse Weight Averaging for Out-of-Distribution Generalization

    No full text
    31 pages, 14 figures, 11 tablesInternational audienceStandard neural networks struggle to generalize under distribution shifts. For out-of-distribution generalization in computer vision, the best current approach averages the weights along a training run. In this paper, we propose Diverse Weight Averaging (DiWA) that makes a simple change to this strategy: DiWA averages the weights obtained from several independent training runs rather than from a single run. Perhaps surprisingly, averaging these weights performs well under soft constraints despite the network's nonlinearities. The main motivation behind DiWA is to increase the functional diversity across averaged models. Indeed, models obtained from different runs are more diverse than those collected along a single run thanks to differences in hyperparameters and training procedures. We motivate the need for diversity by a new bias-variance-covariance-locality decomposition of the expected error, exploiting similarities between DiWA and standard functional ensembling. Moreover, this decomposition highlights that DiWA succeeds when the variance term dominates, which we show happens when the marginal distribution changes at test time. Experimentally, DiWA consistently improves the state of the art on the competitive DomainBed benchmark without inference overhead

    Unsupervised domain adaptation with non-stochastic missing data

    No full text
    International audienceWe consider unsupervised domain adaptation (UDA) for classification problems in the presence of missing data in the unlabelled target domain. More precisely, motivated by practical applications, we analyze situations where distribution shift exists between domains and where some components are systematically absent on the target domain without available supervision for imputing the missing target components. We propose a generative approach for imputation. Imputation is performed in a domain-invariant latent space and leverages indirect supervision from a complete source domain. We introduce a single model performing joint adaptation, imputation and classification which, under our assumptions, minimizes an upper bound of its target generalization error and performs well under various representative divergence families (H-divergence, Optimal Transport). Moreover, we compare the target error of our Adaptation-imputation framework and the "ideal" target error of a UDA classifier without missing target components. Our model is further improved with self-training, to bring the learned source and target class posterior distributions closer. We perform experiments on three families of datasets of different modalities: a classical digit classification benchmark, the Amazon product reviews dataset both commonly used in UDA and real-world digital advertising datasets. We show the benefits of jointly performing adaptation, classification and imputation on these datasets

    Mapping conditional distributions for domain adaptation under generalized target shift

    No full text
    International audienceWe consider the problem of unsupervised domain adaptation (UDA) between a source and a target domain under conditional and label shift a.k.a Generalized Target Shift (GeTarS). Unlike simpler UDA settings, few works have addressed this challenging problem. Recent approaches learn domain-invariant representations, yet they have practical limitations and rely on strong assumptions that may not hold in practice. In this paper, we explore a novel and general approach to align pretrained representations, which circumvents existing drawbacks. Instead of constraining representation invariance, it learns an optimal transport map, implemented as a NN, which maps source representations onto target ones. Our approach is flexible and scalable, it preserves the problem's structure and it has strong theoretical guarantees under mild assumptions. In particular, our solution is unique, matches conditional distributions across domains, recovers target proportions and explicitly controls the target generalization risk. Through an exhaustive comparison on several datasets, we challenge the state-of-the-art in GeTarS

    Mapping conditional distributions for domain adaptation under generalized target shift

    No full text
    International audienceWe consider the problem of unsupervised domain adaptation (UDA) between a source and a target domain under conditional and label shift a.k.a Generalized Target Shift (GeTarS). Unlike simpler UDA settings, few works have addressed this challenging problem. Recent approaches learn domain-invariant representations, yet they have practical limitations and rely on strong assumptions that may not hold in practice. In this paper, we explore a novel and general approach to align pretrained representations, which circumvents existing drawbacks. Instead of constraining representation invariance, it learns an optimal transport map, implemented as a NN, which maps source representations onto target ones. Our approach is flexible and scalable, it preserves the problem's structure and it has strong theoretical guarantees under mild assumptions. In particular, our solution is unique, matches conditional distributions across domains, recovers target proportions and explicitly controls the target generalization risk. Through an exhaustive comparison on several datasets, we challenge the state-of-the-art in GeTarS
    corecore