300 research outputs found

    How are soil use and management reflected by soil organic matter characteristics: a spectroscopic approach

    Get PDF
    We studied the quantitative and qualitative changes of soil organic matter (SOM) due to different land uses (arable versus grassland) and treatments (organic manure and mineral fertilizer) within an agricultural crop rotation in a long-term field experiment, conducted since 1956 at Ultuna, Sweden, on a Eutric Cambisol. The organic carbon (OC) content of the grassland plot was 1.8 times greater than that of the similarly fertilized Ca(NO3) 2 treated cropped plots. The comparison of two dispersion techniques (a lowenergy sonication and a chemical dispersion which yield inherent soil aggregates) showed that increasing OC contents of the silt-sized fractions were not matched by a linear increase of silt-sized aggregates. This indicated saturation of the aggregates with OC and a limited capacity of particles to protect OC physically. Thermogravimetric analyses suggested an increase of free organic matter with increasing OC contents. Transmission FT-IR spectroscopy showed relative enrichment of carboxylic, aromatic, CH and NH groups in plots with increasing OC contents. The silt-sized fractions contained the largest SOM pool and, as revealed by 13C NMR spectroscopy, were qualitatively more influenced by the plant residue versus manure input than the clay fractions. Alkyl and O-alkyl C in the silt-sized fractions amounted to 57.4% of organic carbon in the animal manure treated plots and 50–53% in the other treatments.We thank the Austrian Science Fund (Fonds zur FÖrderung der wissenschaftlichen Forschung) for funding this bilateral project.Peer reviewe

    Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator Bi2Se3

    Full text link
    Using femtosecond time- and angle- resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi2Se3. We studied p-type Bi2Se3, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a meta-stable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents

    La differenciation plastidale chez l'acetabulaire etudiee par l'emission de fluorescence a 77° K

    Full text link
    Plastidal differentiation in Acetabularia studied by fluorescence emission at 77° K. Examination of the 77° K fluorescence emission spectra provides a good criterion for distinguishing chloroplasts of the apical from those of the basal region of the stalk of Acetabularia cells at stage 4. Extraction increases the differences between the emission spectra of apical and basal chloroplasts. By using the 77° K fluorescence emission spectra technique, it is possible to show the differentiation of the plastids and to follow it during the regeneration of anucleate and nucleate fragments. © 1975

    Persistent order due to transiently enhanced nesting in an electronically excited charge density wave

    Get PDF
    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time- and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of the dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. Our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order
    • …
    corecore