1,494 research outputs found

    XANTUS: rationale and design of a noninterventional study of rivaroxaban for the prevention of stroke in patients with atrial fibrillation.

    Get PDF
    Atrial fibrillation (AF) is associated with a fivefold increase in the risk of stroke. The Phase III ROCKET AF (Rivaroxaban Once-Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation) trial showed that rivaroxaban, an oral, direct Factor Xa inhibitor, was noninferior to warfarin for the reduction of stroke or systemic embolism in patients with AF. Compared with warfarin, rivaroxaban significantly reduced rates of intracranial and fatal hemorrhages, although not rates of bleeding overall. XANTUS (Xarelto(®) for Prevention of Stroke in Patients with Atrial Fibrillation) is a prospective, international, observational, postauthorization, noninterventional study designed to collect safety and efficacy data on the use of rivaroxaban for stroke prevention in AF in routine clinical practice. The key goal is to determine whether the safety profile of rivaroxaban established in ROCKET AF is also observed in routine clinical practice. XANTUS is designed as a single-arm cohort study to minimize selection bias, and will enroll approximately 6,000 patients (mostly from Europe) with nonvalvular AF prescribed rivaroxaban, irrespective of their level of stroke risk. Overall duration of follow-up will be 1 year; the first patient was enrolled in June 2012. Similar studies (XANTUS-EL [Xarelto(®) for Prevention of Stroke in Patients with Nonvalvular Atrial Fibrillation, Eastern Europe, Middle East, Africa and Latin America] and XANAP [Xarelto(®) for Prevention of Stroke in Patients with Atrial Fibrillation in Asia-Pacific]) are ongoing in Latin America and Asia-Pacific. Data from these studies will supplement those from ROCKET AF and provide practical information concerning the use of rivaroxaban for stroke prevention in AF

    Impact of Modifiable Bleeding Risk Factors on Major Bleeding in Patients With Atrial Fibrillation Anticoagulated With Rivaroxaban.

    Get PDF
    Background Reducing major bleeding events is a challenge when managing anticoagulation in patients with atrial fibrillation. This study evaluated the impact of modifiable and nonmodifiable bleeding risk factors in patients with atrial fibrillation receiving rivaroxaban and estimated the impact of risk factor modification on major bleeding events. Methods and Results Modifiable and nonmodifiable risk factors associated with major bleeding events were identified from the XANTUS (Xarelto for Prevention of Stroke in Patients With Atrial Fibrillation) prospective registry data set (6784 rivaroxaban-treated patients). Parameters showing univariate association with bleeding were used to construct a multivariable model identifying independent risk factors. Modeling was used to estimate attributed weights to risk factors. Heavy alcohol use (hazard ratio [HR]=2.37; 95% CI 1.24-4.53); uncontrolled hypertension (HR after parameter-wise shrinkage=1.79; 95% CI 1.05-3.05); and concomitant treatment with antiplatelets, nonsteroidal anti-inflammatory drugs, or paracetamol (HR=1.80; 95% CI 1.24-2.61) were identified as modifiable, independent bleeding risk factors. Increasing age (HR=1.25 [per 5-year increment]; 95% CI 1.12-1.38); heart failure (HR=1.97; 95% CI 1.36-2.86); and vascular disease (HR=1.91; 95% CI 1.32-2.77) were identified as nonmodifiable bleeding risk factors. Overall, 128 (1.9%) patients experienced major bleeding events; of these, 11% had no identified bleeding risk factors, 50% had nonmodifiable bleeding risk factors only, and 39% had modifiable bleeding risk factors (with or without nonmodifiable risk factors). The presence of 1 modifiable bleeding risk factor doubled the risk of major bleeding. Conclusions Elimination of modifiable bleeding risk factors is a potentially effective strategy to reduce bleeding risk in atrial fibrillation patients receiving rivaroxaban. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01606995

    Systematic Analysis of Gene Expression Differences between Left and Right Atria in Different Mouse Strains and in Human Atrial Tissue

    Get PDF
    Background: Normal development of the atria requires left-right differentiation during embryonic development. Reduced expression of Pitx2c (paired-like homeodomain transcription factor 2, isoform c), a key regulator of left-right asymmetry, has recently been linked to atrial fibrillation. We therefore systematically studied the molecular composition of left and right atrial tissue in adult murine and human atria. Methods: We compared left and right atrial gene expression in healthy, adult mice of different strains and ages by employing whole genome array analyses on freshly frozen atrial tissue. Selected genes with enriched expression in either atrium were validated by RT-qPCR and Western blot in further animals and in shock-frozen left and right atrial appendages of patients undergoing open heart surgery. Results: We identified 77 genes with preferential expression in one atrium that were common in all strains and age groups analysed. Independent of strain and age, Pitx2c was the gene with the highest enrichment in left atrium, while Bmp10, a member of the TGFb family, showed highest enrichment in right atrium. These differences were validated by RT-qPCR in murine and human tissue. Western blot showed a 2-fold left-right concentration gradient in PITX2 protein in adult human atria. Several of the genes and gene groups enriched in left atria have a known biological role for maintenance of healthy physiology, specifically the prevention of atrial pathologies involved in atrial fibrillation, including membrane electrophysiology, metabolic cellular function, and regulation of inflammatory processes. Comparison of the array datasets with published array analyses in heterozygous Pitx2c+/2 atria suggested that approximately half of the genes with left-sided enrichment are regulated by Pitx2c. Conclusions: Our study reveals systematic differences between left and right atrial gene expression and supports the hypothesis that Pitx2c has a functional role in maintaining ‘‘leftness’’ in the atrium in adult murine and human hearts

    Effects of Rivaroxaban on Biomarkers of Coagulation and Inflammation: A Post Hoc Analysis of the X-VeRT Trial.

    Get PDF
    Introduction  This X-VeRT (eXplore the efficacy and safety of once-daily oral riVaroxaban for the prevention of caRdiovascular events in patients with nonvalvular aTrial fibrillation scheduled for cardioversion) substudy evaluated the effects of treatment with rivaroxaban or a vitamin-K antagonist (VKA) on levels of biomarkers of coagulation (D-dimer, thrombin-antithrombin III complex [TAT] and prothrombin fragment [F1.2]) and inflammation (high sensitivity C-reactive protein [hs-CRP] and high-sensitivity interleukin-6 [hs-IL-6]) in patients with atrial fibrillation (AF) who were scheduled for cardioversion and had not received adequate anticoagulation at baseline (defined as, in the 21 days before randomization: no oral anticoagulant; international normalized ratio <2.0 with VKA treatment; or <80% compliance with non-VKA oral anticoagulant treatment). Methods  Samples for biomarker analysis were taken at baseline ( n  = 958) and treatment completion (42 days after cardioversion; n  = 918). The influence of clinical characteristics on baseline biomarker levels and the effect of treatment on changes in biomarker levels were evaluated using linear and logistic models. Results  Baseline levels of some biomarkers were significantly associated with type of AF (D-dimer and hs-IL-6) and with history of congestive heart failure (hs-CRP, D-dimer, and hs-IL-6). Rivaroxaban and VKA treatments were associated with reductions from baseline in levels of D-dimer (-32.3 and -37.6%, respectively), TAT (-28.0 and -23.1%, respectively), hs-CRP (-12.5 and -17.9%, respectively), and hs-IL-6 (-9.2 and -9.8%, respectively). F1.2 levels were reduced from baseline in patients receiving a VKA (-53.0%) but not in those receiving rivaroxaban (2.7%). Conclusion  Anticoagulation with rivaroxaban reduced levels of key inflammation and coagulation biomarkers to a similar extent as VKAs, with the exception of F1.2. Further investigation to confirm the value of these biomarkers in patients with AF is merited

    PITX2 Modulates Atrial Membrane Potential and the Antiarrhythmic Effects of Sodium-Channel Blockers.

    Get PDF
    BACKGROUND: Antiarrhythmic drugs are widely used to treat patients with atrial fibrillation (AF), but the mechanisms conveying their variable effectiveness are not known. Recent data suggested that paired like homeodomain-2 transcription factor (PITX2) might play an important role in regulating gene expression and electrical function of the adult left atrium (LA). OBJECTIVES: After determining LA PITX2 expression in AF patients requiring rhythm control therapy, the authors assessed the effects of Pitx2c on LA electrophysiology and the effect of antiarrhythmic drugs. METHODS: LA PITX2 messenger ribonucleic acid (mRNA) levels were measured in 95 patients undergoing thoracoscopic AF ablation. The effects of flecainide, a sodium (Na(+))-channel blocker, and d,l-sotalol, a potassium channel blocker, were studied in littermate mice with normal and reduced Pitx2c mRNA by electrophysiological study, optical mapping, and patch clamp studies. PITX2-dependent mechanisms of antiarrhythmic drug action were studied in human embryonic kidney (HEK) cells expressing human Na channels and by modeling human action potentials. RESULTS: Flecainide 1 μmol/l was more effective in suppressing atrial arrhythmias in atria with reduced Pitx2c mRNA levels (Pitx2c(+/-)). Resting membrane potential was more depolarized in Pitx2c(+/-) atria, and TWIK-related acid-sensitive K(+) channel 2 (TASK-2) gene and protein expression were decreased. This resulted in enhanced post-repolarization refractoriness and more effective Na-channel inhibition. Defined holding potentials eliminated differences in flecainide's effects between wild-type and Pitx2c(+/-) atrial cardiomyocytes. More positive holding potentials replicated the increased effectiveness of flecainide in blocking human Nav1.5 channels in HEK293 cells. Computer modeling reproduced an enhanced effectiveness of Na-channel block when resting membrane potential was slightly depolarized. CONCLUSIONS: PITX2 mRNA modulates atrial resting membrane potential and thereby alters the effectiveness of Na-channel blockers. PITX2 and ion channels regulating the resting membrane potential may provide novel targets for antiarrhythmic drug development and companion therapeutics in AF

    Can we improve outcomes in AF patients by early therapy?

    Get PDF
    Atrial fibrillation affects at least 1% of the population and causes marked society-wide morbidity and mortality. Current management of atrial fibrillation including antithrombotic therapy and management of concomitant conditions in all patients, rate control therapy in most patients, and rhythm control therapy in patients with severe atrial fibrillation-related symptoms can alleviate atrial fibrillation-related symptoms but can neither effectively prevent recurrent atrial fibrillation nor suppress atrial fibrillation-related complications. Hence, there is a need for better therapy of atrial fibrillation

    Epifluorescence imaging of electrochemically Switchable Langmuir-Blodgett films of Nafion

    Get PDF
    Reforestation of riparian zones is increasingly practiced in many regions for purposes of biodiversity conservation, bank stabilisation, and improvement in water quality. This is in spite of the actual benefits of reforestation for recovering underlying soil properties and function remaining poorly understood. Here we compare remnant riparian rainforest, pasture and reforestation plantings aged 2-20 years in an Australian subtropical catchment on ferrosols to determine the extent to which reforestation restores key soil properties. Of the nine soil attributes measured (total nitrogen, nitrate and ammonium concentrations, net nitrification and ammonification rates, organic carbon, bulk density, fine root biomass and water infiltration rates), only infiltration rates were significantly lower in pasture than remnant riparian rainforest. Within reforestation plantings, bulk density decreased up to 1.4-fold and infiltration rates increased up to 60-fold with time post-reforestation. Our results suggest that the main outcome of belowground processes of early reforestation is the recovery of the soils' physical structure, with potential beneficial ecosystem services including reduced runoff, erosion and associated sediment and nutrient loads in waterways. We also demonstrate differential impacts of two commonly planted tree species on a subset of soil properties suggesting that preferential planting of select species could accelerate progress on specific restoration objectives
    corecore