33 research outputs found

    Geochemical and Isotopic Evolution of Late Oligocene Magmatism in Quchan, NE Iran

    Get PDF
    Magmatic activity that accompanied the collision between Arabia and Eurasia at ∌27 Ma, provides unique opportunities for understanding the triggers and magma reservoirs for collisional magmatism and its different styles in magmatic fronts and back-arcs. We present new ages and geochemical-isotopic results for magmatic rocks that formed during the collision between Arabia and Eurasia in NE Iran, which was a back-arc region to the main magmatic arcs of Iran. Our new zircon U-Pb ages indicate that collisional magmatism began at ∌24 Ma in the NE Iran back-arc, although magmatism in this area started in the Late Cretaceous time and continued until the Pleistocene. The collisional igneous rocks are characteristically bimodal, and basaltic-andesitic and dacitic-rhyolitic components show significant isotopic differences; ΔNd(t) = +4.4 to +7.4 and ΔHf(t) = +5.4 to +9.5 for mafic rocks and ΔNd(t) = +0.2 to +8.4 and ΔHf(t) = +3.4 to +12.3 for silicic rocks. The isotopic values and modeling suggest that fractional crystallization and assimilation-fractional crystallization played important roles in the genesis of felsic rocks in the NE Iran collisional zone. Trace element and isotopic modeling further emphasize that the main triggers of the magmatism in NE Iran comprise a depleted to the enriched mantle and the Cadomian continental crust of Iran. Our results also emphasize the temporal magmatic variations in the NE Iran back-arc from Late Cretaceous to Pleistocene. © 2021. The Authors

    Sub-arc mantle enrichment in the Sunda rear-arc inferred from HFSE systematics in high-K lavas from Java

    Get PDF
    Many terrestrial silicate reservoirs display a characteristic depletion in Nb, which has been explained in some studies by the presence of reservoirs on Earth with superchondritic Nb/Ta. As one classical example, K-rich lavas from the Sunda rear-arc, Indonesia, have been invoked to tap such a high-Nb/Ta reservoir. To elucidate the petrogenetic processes active beneath the Java rear-arc and the causes for the superchondritic Nb/Ta in some of these lavas, we studied samples from the somewhat enigmatic Javanese rear-arc volcano Muria, which allow conclusions regarding the across-arc variations in volcanic output, source mineralogy and subduction components. We additionally report some data for an along-arc sequence of lavas from the Indonesian part of the Sunda arc, extending from Krakatoa in the west to the islands of Bali and Lombok in the east. We present major and trace element concentrations, Sr–Nd–Hf–Pb isotope compositions, and high-field-strength element (HFSE: Nb, Ta, Zr, Hf, W) concentrations obtained via isotope dilution and MC-ICP-MS analyses. The geochemical data are complemented by melting models covering different source compositions with slab melts formed at variable P–T conditions. The radiogenic isotope compositions of the frontal arc lavas in combination with their trace element systematics confirm previously established regional variations of subduction components along the arc. Melting models show a clear contribution of a sediment-derived component to the HFSE budget of the frontal arc lavas, particularly affecting Zr–Hf and W. In contrast, the K-rich rear-arc lavas tap more hybrid and enriched mantle sources. The HFSE budget of the rear-arc lavas is in particular characterized by superchondritic Nb/Ta (up to 25) that are attributed to deep melting involving overprint by slab melts formed from an enriched garnet–rutile-bearing eclogitic residue. Sub-arc slab melting was potentially triggered along a slab tear beneath the Sunda arc, which is the result of the forced subduction of an oceanic basement relief ~ 8 Myr ago as confirmed by geophysical studies. The purported age of the slab tear coincides with a paucity in arc volcanism, widespread thrusting of the Javanese basement crust as well as the short-lived nature of the K-rich rear-arc volcanism at that time. © 2021, The Author(s)

    Mineralogical Controls on the Ti Isotope Composition of Subduction Zone Magmas

    Get PDF
    The positive Ti isotope versus SiO2-content correlation in igneous rocks reflects the fractional crystallization of Ti-bearing oxide minerals. However, Ti isotope variations of subduction-related igneous rocks indicate that the Ti isotope compositions of their mantle sources are heterogeneous and additional mineral phases may promote Ti isotope fractionation. We have determined the Ti isotope composition of well-characterized subduction-related basalts, andesites and boninites. Samples from the Solomon Islands, the Troodos ophiolite in Cyprus, and Cape Vogel in Papua New Guinea show small but resolvable variations that may be related to differences in their mantle sources. Specifically, the ή49Ti of boninites (+0.109‰ to +0.168‰) is slightly higher than that of tholeiites (−0.027‰ to +0.111‰) from the same localities (Troodos in Cyprus and Cape Vogel in Papua New Guinea). Modeling suggests the partial melting of progressively depleted mantle sources where residual Cr-spinel plays a greater role in controlling the Ti budget during partial melting. More pronounced variations in ή49Ti are clearly linked to the fractional crystallization of Ti-oxides: Samples from Rabaul Volcanic Complex (New Britain, Papua New Guinea) show increasing ή49Ti (up to +0.373‰) with increasing Ti/V and decreasing Dy/Yb. Fractional crystallization models suggest that oxide minerals and amphibole are needed to sufficiently increase the ή49Ti of these magmas. Our study highlights that the combination of diagnostic trace element patterns and Ti isotope compositions in subduction-related igneous rocks can be a powerful tool to constrain petrogenetic processes and to discriminate between different crystallizing mineral phases

    Subduction initiation and back-arc opening north of Neo-Tethys: Evidence from the Late Cretaceous Torbat-e-Heydarieh ophiolite of NE Iran

    Get PDF
    How new subduction zones form is an ongoing scientific question with key implications for our understanding of how this process influences the behavior of the overriding plate. Here we focus on the effects of a Late Cretaceous subduction-initiation (SI) event in Iran and show how SI caused enough extension to open a back-arc basin in NE Iran. The Late Cretaceous Torbat-e-Heydarieh ophiolite (THO) is well exposed as part of the Sabzevar-Torbat-e-Heydarieh ophiolite belt. It is dominated by mantle peridotite, with a thin crustal sequence. The THO mantle sequence consists of harzburgite, clinopyroxene-harzburgite, plagioclase lherzolite, impregnated lherzolite, and dunite. Spinel in THO mantle peridotites show variable Cr# (10−63), similar to both abyssal and fore-arc peridotites. The igneous rocks (gabbros and dikes intruding mantle peridotite, pillowed and massive lavas, amphibole gabbros, plagiogranites and associated diorites, and diabase dikes) display rare earth element patterns similar to MORB, arc tholeiite and back-arc basin basalt. Zircons from six samples, including plagiogranites and dikes within mantle peridotite, yield U-Pb ages of ca. 99−92 Ma, indicating that the THO formed during the Late Cretaceous and was magmatically active for ∌7 m.y. THO igneous rocks have variable ΔNd(t) of +5.7 to +8.2 and ΔHf(t) ranging from +14.9 to +21.5; zircons have ΔHf(t) of +8.1 to +18.5. These isotopic compositions indicate that the THO rocks were derived from an isotopically depleted mantle source similar to that of the Indian Ocean, which was slightly affected by the recycling of subducted sediments. We conclude that the THO and other Sabzevar-Torbat-e-Heydarieh ophiolites formed in a back-arc basin well to the north of the Late Cretaceous fore-arc, now represented by the Zagros ophiolites, testifying that a broad region of Iran was affected by upper-plate extension accompanying Late Cretaceous subduction initiation

    Subduction initiation and ophiolite crust: new insights from IODP drilling

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 352 recovered a high-fidelity record of volcanism related to subduction initiation in the Bonin fore-arc. Two sites (U1440 and U1441) located in deep water nearer to the trench recovered basalts and related rocks; two sites (U1439 and U1442) located in shallower water further from the trench recovered boninites and related rocks. Drilling in both areas ended in dolerites inferred to be sheeted intrusive rocks. The basalts apparently erupted immediately after subduction initiation and have compositions similar to those of the most depleted basalts generated by rapid sea-floor spreading at mid-ocean ridges, with little or no slab input. Subsequent melting to generate boninites involved more depleted mantle and hotter and deeper subducted components as subduction progressed and volcanism migrated away from the trench. This volcanic sequence is akin to that recorded by many ophiolites, supporting a direct link between subduction initiation, fore-arc spreading, and ophiolite genesis

    Sub‑arc mantle enrichment in the Sunda rear‑arc inferred from HFSE systematics in high‑K lavas from Java

    Get PDF
    M. Kirchenbaur acknowledges funding by the German Research Foundation (DFG grant KI 1802/1-1) and C. Munker by DFG grant 1406/9. Parts of the sampling campaign were funded by a DAAD academic exchange program. S. Konig acknowledges support from ERC STG project O2RIGIN (636808). We would like to thank F. Wombacher, and A. Katzemich for lab support at the University of Cologne, S. Viehmann and H. Poppe for help during the sampling campaign, and J.E. Hoffmann for discussions and mass spectrometry assistance in Bonn. The help of U. Westernstroer (University of Kiel) with ICP-MS analyses is greatly appreciated. The reviews by Bill Leeman and Marcel Regelous are highly appreciated and significantly improved the manuscript. We also acknowledge the comments of two anonymous reviewers on an earlier version of the manuscript.Many terrestrial silicate reservoirs display a characteristic depletion in Nb, which has been explained in some studies by the presence of reservoirs on Earth with superchondritic Nb/Ta. As one classical example, K-rich lavas from the Sunda rear-arc, Indonesia, have been invoked to tap such a high-Nb/Ta reservoir. To elucidate the petrogenetic processes active beneath the Java rear-arc and the causes for the superchondritic Nb/Ta in some of these lavas, we studied samples from the somewhat enigmatic Javanese rear-arc volcano Muria, which allow conclusions regarding the across-arc variations in volcanic output, source mineralogy and subduction components. We additionally report some data for an along-arc sequence of lavas from the Indonesian part of the Sunda arc, extending from Krakatoa in the west to the islands of Bali and Lombok in the east. We present major and trace element concentrations, Sr–Nd–Hf–Pb isotope compositions, and high-field-strength element (HFSE: Nb, Ta, Zr, Hf, W) concentrations obtained via isotope dilution and MC-ICP-MS analyses. The geochemical data are complemented by melting models covering different source compositions with slab melts formed at variable P–T conditions. The radiogenic isotope compositions of the frontal arc lavas in combination with their trace element systematics confirm previously established regional variations of subduction components along the arc. Melting models show a clear contribution of a sediment-derived component to the HFSE budget of the frontal arc lavas, particularly affecting Zr–Hf and W. In contrast, the K-rich rear-arc lavas tap more hybrid and enriched mantle sources. The HFSE budget of the rear-arc lavas is in particular characterized by superchondritic Nb/Ta (up to 25) that are attributed to deep melting involving overprint by slab melts formed from an enriched garnet–rutile-bearing eclogitic residue. Sub-arc slab melting was potentially triggered along a slab tear beneath the Sunda arc, which is the result of the forced subduction of an oceanic basement relief ~ 8 Myr ago as confirmed by geophysical studies. The purported age of the slab tear coincides with a paucity in arc volcanism, widespread thrusting of the Javanese basement crust as well as the short-lived nature of the K-rich rear-arc volcanism at that time.German Research Foundation (DFG) KI 1802/1-1 German Research Foundation (DFG)European Commission 1406/9DAAD academic exchange programERC STG project O2RIGIN 63680

    The behaviour of the extended HFSE group (Nb, Ta, Zr, Hf, W, Mo) during the petrogenesis of mafic K-rich lavas: The Eastern Mediterranean case

    No full text
    In arc lavas, elements of the extended high field strength element group (HFSE; Nb, Ta, Zr, Hf, W, and Mo) are valuable tracers to unravel magma source processes. These elements can also help to identify residual mineral assemblages in subducting slabs and in the mantle. Most high-precision studies on HFSE behaviour to date only focused on intra-oceanic arc suites and data for mafic lavas of the K-rich series (medium-K, high-K and shoshonitic) are scarce. Arguably, K-rich series are the most incompatible element-rich end-members of subduction zone magmatism, and they often record sediment recycling into the mantle. Understanding HFSE fractionation in K-rich lavas can therefore provide important insight into the global HFSE budget. Here we present a comprehensive extended HFSE dataset obtained by isotope dilution on well-characterised K-rich lavas from the Eastern Mediterranean, also including subducting sediment samples drilled during DSDP Leg 13 and ODP Leg 160 South and West of Crete. The volcanic samples include mafic calc-alkaline lavas from the active Aegean Island arc (Santorini) and post-collisional Tertiary lavas from SE Bulgaria. The Santorini lavas record a hydrous sediment melt-mediated source overprint of a depleted mantle source by components from the subducting African plate. The Bulgarian lavas tap lithospheric mantle sources that were overprinted by fluid- and melt-like subduction components during Eocene subduction of the African Plate. The sediments in this study comprise silts/sands, marl oozes, limestones and clay-rich debris flows and approximate the bulk sediment subducted beneath the Hellenic arc. The marked enrichment of all HFSE in the lavas is controlled by the composition of the subducted sediments as shown by low Lu-176/Hf-177 (0.008630-0.02433) and Zr/Nb (11.3-29.4), combined with variable epsilon Hf (-3 to +11) and elevated W contents (up to 2.45 ppm) in the lavas. Nevertheless, the lavas display unfractionated ratios of Nb/Ta and Zr/Hf of 12.3-16.5 and 34.4-38.6, respectively, with respect to MORB. This feature may be explained by the Nb/Ta in the sediments that are on average higher (15.2 +/- 2) compared to typical upper crustal estimates (12.5 +/- 1.8), indicating a strong regional control on the HFSE ratios in Eastern Mediterranean sediments. The lavas exhibit low Ta/W(<1.33), but do not show elevated W/Th, as expected for island-arcs entirely dominated by subduction zone fluids. Ratios of Mo/W in all lavas are low (<1.79), which, according to experimental evidence, can be explained by low fluid salinities at moderately oxidised conditions. Collectively, our data therefore confirm the mobility of W in subduction zones, but the selective mobility of W relative to the similar incompatible Th and Mo depends on the proportion of melt-like components, the composition of the material being subducted and ambient redox conditions in the subducted material. (C) 2015 Elsevier Ltd. All rights reserved

    Sub-arc mantle enrichment in the Sunda rear-arc inferred from HFSE systematics in high-K lavas from Java

    No full text
    Many terrestrial silicate reservoirs display a characteristic depletion in Nb, which has been explained in some studies by the presence of reservoirs on Earth with superchondritic Nb/Ta. As one classical example, K-rich lavas from the Sunda rear-arc, Indonesia, have been invoked to tap such a high-Nb/Ta reservoir. To elucidate the petrogenetic processes active beneath the Java rear-arc and the causes for the superchondritic Nb/Ta in some of these lavas, we studied samples from the somewhat enigmatic Javanese rear-arc volcano Muria, which allow conclusions regarding the across-arc variations in volcanic output, source mineralogy and subduction components. We additionally report some data for an along-arc sequence of lavas from the Indonesian part of the Sunda arc, extending from Krakatoa in the west to the islands of Bali and Lombok in the east. We present major and trace element concentrations, Sr–Nd–Hf–Pb isotope compositions, and high-field-strength element (HFSE: Nb, Ta, Zr, Hf, W) concentrations obtained via isotope dilution and MC-ICP-MS analyses. The geochemical data are complemented by melting models covering different source compositions with slab melts formed at variable P–T conditions. The radiogenic isotope compositions of the frontal arc lavas in combination with their trace element systematics confirm previously established regional variations of subduction components along the arc. Melting models show a clear contribution of a sediment-derived component to the HFSE budget of the frontal arc lavas, particularly affecting Zr–Hf and W. In contrast, the K-rich rear-arc lavas tap more hybrid and enriched mantle sources. The HFSE budget of the rear-arc lavas is in particular characterized by superchondritic Nb/Ta (up to 25) that are attributed to deep melting involving overprint by slab melts formed from an enriched garnet–rutile-bearing eclogitic residue. Sub-arc slab melting was potentially triggered along a slab tear beneath the Sunda arc, which is the result of the forced subduction of an oceanic basement relief ~ 8 Myr ago as confirmed by geophysical studies. The purported age of the slab tear coincides with a paucity in arc volcanism, widespread thrusting of the Javanese basement crust as well as the short-lived nature of the K-rich rear-arc volcanism at that time.Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655Gottfried Wilhelm Leibniz UniversitĂ€t Hannover (1038

    Sub-arc mantle enrichment in the Sunda rear-arc inferred from HFSE systematics in high-K lavas from Java

    No full text
    Many terrestrial silicate reservoirs display a characteristic depletion in Nb, which has been explained in some studies by the presence of reservoirs on Earth with superchondritic Nb/Ta. As one classical example, K-rich lavas from the Sunda rear-arc, Indonesia, have been invoked to tap such a high-Nb/Ta reservoir. To elucidate the petrogenetic processes active beneath the Java rear-arc and the causes for the superchondritic Nb/Ta in some of these lavas, we studied samples from the somewhat enigmatic Javanese rear-arc volcano Muria, which allow conclusions regarding the across-arc variations in volcanic output, source mineralogy and subduction components. We additionally report some data for an along-arc sequence of lavas from the Indonesian part of the Sunda arc, extending from Krakatoa in the west to the islands of Bali and Lombok in the east. We present major and trace element concentrations, Sr–Nd–Hf–Pb isotope compositions, and high-field-strength element (HFSE: Nb, Ta, Zr, Hf, W) concentrations obtained via isotope dilution and MC-ICP-MS analyses. The geochemical data are complemented by melting models covering different source compositions with slab melts formed at variable P–T conditions. The radiogenic isotope compositions of the frontal arc lavas in combination with their trace element systematics confirm previously established regional variations of subduction components along the arc. Melting models show a clear contribution of a sediment-derived component to the HFSE budget of the frontal arc lavas, particularly affecting Zr–Hf and W. In contrast, the K-rich rear-arc lavas tap more hybrid and enriched mantle sources. The HFSE budget of the rear-arc lavas is in particular characterized by superchondritic Nb/Ta (up to 25) that are attributed to deep melting involving overprint by slab melts formed from an enriched garnet–rutile-bearing eclogitic residue. Sub-arc slab melting was potentially triggered along a slab tear beneath the Sunda arc, which is the result of the forced subduction of an oceanic basement relief ~ 8 Myr ago as confirmed by geophysical studies. The purported age of the slab tear coincides with a paucity in arc volcanism, widespread thrusting of the Javanese basement crust as well as the short-lived nature of the K-rich rear-arc volcanism at that time. © 2021, The Author(s)
    corecore