863 research outputs found

    Thin-disk laser pump schemes for large number of passes and moderate pump source quality

    Full text link
    Novel thin-disk laser pump layouts are proposed yielding an increased number of passes for a given pump module size and pump source quality. These novel layouts result from a general scheme which bases on merging two simpler pump optics arrangements. Some peculiar examples can be realized by adapting standard commercially available pump optics simply by intro ducing an additional mirror-pair. More pump passes yield better efficiency, opening the way for usage of active materials with low absorption. In a standard multi-pass pump design, scaling of the number of beam passes brings ab out an increase of the overall size of the optical arrangement or an increase of the pump source quality requirements. Such increases are minimized in our scheme, making them eligible for industrial applicationsComment: 16 pages, 9 figure

    PDB8 WILL IRBESARTAN LEAD TO COST SAVINGS DUE TO DELAYED END STAGE RENAL DISEASE IN HYPERTENSIVE TYPE-2 DIABETICS IN GERMANY?

    Get PDF

    Measurement of the Michel Parameter xi" in Polarized Muon Decay and Implications on Exotic Couplings of the Leptonic Weak Interaction

    Full text link
    The Michel parameter xi" has been determined from a measurement of the longitudinal polarization of positrons emitted in the decay of polarized and depolarized muons. The result, xi" = 0.981 +- 0.045stat +- 0.003syst, is consistent with the Standard Model prediction of unity, and provides an order of magnitude improvement in the relative precision of this parameter. This value sets new constraints on exotic couplings beyond the dominant V-A description of the leptonic weak interaction.Comment: 15 pages, 16 figures, 3 tables; submitted to Phys. Rev.

    Comparison of ultracold neutron sources for fundamental physics measurements

    Full text link
    Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.Comment: 20 pages, 30 Figure

    Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs

    Get PDF
    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts

    Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation

    Get PDF
    Plasma activation of polyetheretherketone (PEEK) surfaces and the influence on coating formation in a supersaturated calcium phosphate solution was investigated in this study. It was observed that plasma treatment in a N2/O2 plasma had a significant effect on the wettability of the PEEK surface. The contact angle decreased from 85° to 25° after plasma treatment. Cell culture testing with osteoblastic cell lines showed plasma activation not to be disadvantageous to cell viability. X-ray photoelectron spectroscopy (XPS) analysis was performed to characterize the chemical composition of the PEEK surfaces. It was observed that the O1s intensity increased with plasma activation time. At the C1s peak the appearance of a shoulder at higher binding energies was observed. Coating of PEEK was performed in a supersaturated calcium phosphate solution. Coating thicknesses of up to 50 μm were achieved after 24 days of immersion. Plasma activation followed by nucleation in a highly saturated hydroxyapatite solution had a positive effect on the growth rate of the layer on PEEK. Chemical analysis revealed that the coating consists of a carbonate-containing calcium phosphat

    Solid deuterium surface degradation at ultracold neutron sources

    Full text link
    Solid deuterium (sD_2) is used as an efficient converter to produce ultracold neutrons (UCN). It is known that the sD_2 must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum. Also the UCN transparency of the bulk sD_2 material must be high because crystal inhomogeneities limit the mean free path for elastic scattering and reduce the extraction efficiency. Observations at the UCN sources at Paul Scherrer Institute and at Los Alamos National Laboratory consistently show a decrease of the UCN yield with time of operation after initial preparation or later treatment (`conditioning') of the sD_2. We show that, in addition to the quality of the bulk sD_2, the quality of its surface is essential. Our observations and simulations support the view that the surface is deteriorating due to a build-up of D_2 frost-layers under pulsed operation which leads to strong albedo reflections of UCN and subsequent loss. We report results of UCN yield measurements, temperature and pressure behavior of deuterium during source operation and conditioning, and UCN transport simulations. This, together with optical observations of sD_2 frost formation on initially transparent sD_2 in offline studies with pulsed heat input at the North Carolina State University UCN source results in a consistent description of the UCN yield decrease.Comment: 15 pages, 22 figures, accepted by EPJ-

    Time-of-flight spectroscopy of ultracold neutrons at the PSI UCN source

    Full text link
    The ultracold neutron (UCN) source at the Paul Scherrer Institute (PSI) provides high intensities of storable neutrons for fundamental physics experiments. The neutron velocity spectrum parallel to the beamline axis was determined by time-of-flight spectroscopy using a neutron chopper. In particular, the temporal evolution of the spectrum during neutron production and UCN storage in the source storage volume was investigated and compared to Monte Carlo simulation results. A softening of the measured spectrum from a mean velocity of 7.7(1) m s1^{-1} to 5.1(1) m s1^{-1} occurred within the first 30 s after the proton beam pulse had impinged on the spallation target. A spectral hardening was observed over longer time scales of one measurement day, consistent with the effect of surface degradation of the solid deuterium moderator
    corecore