190 research outputs found

    PTPN22 gene polymorphism in Takayasu's arteritis

    Get PDF
    Objective. Takayasu's arteritis (TA) is a chronic, rare granulomatous panarteritis of unknown aetiology involving mainly the aorta and its major branches. In this study, genetic susceptibility to TA has been investigated by screening the functional single nucleotide polymorphism (SNP) of PTPN22 gene encoding the lymphoid-specific protein tyrosine phosphatase. Methods. Totally, 181 patients with TA and 177 healthy controls are genotyped by PCR-RFLP method for the SNP rs2476601 (A/G) of PTPN22 gene. Polymorphic region was amplified by PCR and digested with Xcm I enzyme. Results. Detected frequencies of heterozygous genotype (AG) were 5.1% (9/177) in control group and 3.8% (7/181) in TA group (P = 0.61, odds ratio: 0.75, 95% CI: 0.3, 2.0). No association with angiographic type, vascular involvement or prognosis of TA was observed either. Conclusion. The distribution of PTPN22 polymorphism did not reveal any association with TA in Turkey. © The Author 2008. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved

    Properties of a single photon generated by a solid-state emitter: effects of pure dephasing

    Full text link
    We investigate the properties of a single photon generated by a solid-state emitter subject to strong pure dephasing. We employ a model in which all the elements of the system, including the propagating fields, are treated quantum mechanically. We analytically derive the density matrix of the emitted photon, which contains full information about the photon, such as its pulse profile, power spectrum, and purity. We visualize these analytical results using realistic parameters and reveal the conditions for maximizing the purity of generated photons.Comment: 25pages(one column), 10 figure

    Optical signatures of quantum phase transitions in a light-matter system

    Get PDF
    Information about quantum phase transitions in conventional condensed matter systems, must be sought by probing the matter system itself. By contrast, we show that mixed matter-light systems offer a distinct advantage in that the photon field carries clear signatures of the associated quantum critical phenomena. Having derived an accurate, size-consistent Hamiltonian for the photonic field in the well-known Dicke model, we predict striking behavior of the optical squeezing and photon statistics near the phase transition. The corresponding dynamics resemble those of a degenerate parametric amplifier. Our findings boost the motivation for exploring exotic quantum phase transition phenomena in atom-cavity, nanostructure-cavity, and nanostructure-photonic-band-gap systems.Comment: 4 pages, 4 figure

    Pulmonary function and fuel use: A population survey

    Get PDF
    BACKGROUND: In the backdrop of conflicting reports (some studies reported adverse outcomes of biomass fuel use whereas few studies reported absence of any association between adverse health effect and fuel use, may be due to presence of large number of confounding variables) on the respiratory health effects of biomass fuel use, this cross sectional survey was undertaken to understand the role of fuel use on pulmonary function. METHOD: This study was conducted in a village of western India involving 369 randomly selected adult subjects (165 male and 204 female). All the subjects were interviewed and were subjected to pulmonary function test. Analysis of covariance was performed to compare the levels of different pulmonary function test parameters in relation to different fuel use taking care of the role of possible confounding factors. RESULTS: This study showed that biomass fuel use (especially wood) is an important factor for deterioration of pulmonary function (particularly in female). FEV(1 )(p < .05), FEV(1 )% (p < .01), PEFR (p < .05) and FEF(25–75 )(p < .01) values were significantly lower in biomass fuel using females than nonusers. Comparison of only biomass fuel use vs. only LPG (Liquefied Petroleum Gas) use and only wood vs. only LPG use has showed that LPG is a safer fuel so far as deterioration of pulmonary function is concerned. This study observes some deterioration of pulmonary function in the male subjects also, who came from biomass fuel using families. CONCLUSION: This study concluded that traditional biomass fuels like wood have adverse effects on pulmonary function

    Non-resonant dot-cavity coupling and its applications in resonant quantum dot spectroscopy

    Full text link
    We present experimental investigations on the non-resonant dot-cavity coupling of a single quantum dot inside a micro-pillar where the dot has been resonantly excited in the s-shell, thereby avoiding the generation of additional charges in the QD and its surrounding. As a direct proof of the pure single dot-cavity system, strong photon anti-bunching is consistently observed in the autocorrelation functions of the QD and the mode emission, as well as in the cross-correlation function between the dot and mode signals. Strong Stokes and anti-Stokes-like emission is observed for energetic QD-mode detunings of up to ~100 times the QD linewidth. Furthermore, we demonstrate that non-resonant dot-cavity coupling can be utilized to directly monitor and study relevant QD s-shell properties like fine-structure splittings, emission saturation and power broadening, as well as photon statistics with negligible background contributions. Our results open a new perspective on the understanding and implementation of dot-cavity systems for single-photon sources, single and multiple quantum dot lasers, semiconductor cavity quantum electrodynamics, and their implementation, e.g. in quantum information technology.Comment: 17 pages, 4 figure

    Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence

    Full text link
    Single dye molecules at cryogenic temperatures display many spectroscopic phenomena known from free atoms and are thus promising candidates for fundamental quantum optical studies. However, the existing techniques for the detection of single molecules have either sacrificed the information on the coherence of the excited state or have been inefficient. Here we show that these problems can be addressed by focusing the excitation light near to the absorption cross section of a molecule. Our detection scheme allows us to explore resonance fluorescence over 9 orders of magnitude of excitation intensity and to separate its coherent and incoherent parts. In the strong excitation regime, we demonstrate the first observation of the Mollow triplet from a single solid-state emitter. Under weak excitation we report the detection of a single molecule with an incident power as faint as 150 attoWatt, paving the way for studying nonlinear effects with only a few photons.Comment: 6 figure

    Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box

    Full text link
    Under appropriate conditions, superconducting electronic circuits behave quantum mechanically, with properties that can be designed and controlled at will. We have realized an experiment in which a superconducting two-level system, playing the role of an artificial atom, is strongly coupled to a single photon stored in an on-chip cavity. We show that the atom-photon coupling in this circuit can be made strong enough for coherent effects to dominate over dissipation, even in a solid state environment. This new regime of matter light interaction in a circuit can be exploited for quantum information processing and quantum communication. It may also lead to new approaches for single photon generation and detection.Comment: 8 pages, 4 figures, accepted for publication in Nature, embargo does apply, version with high resolution figures available at: http://www.eng.yale.edu/rslab/Andreas/content/science/PubsPapers.htm

    Hide The Modulus: A Secure Non-Interactive Fully Verifiable Delegation Scheme for Modular Exponentiations via CRT

    Get PDF
    Security protocols using public-key cryptography often requires large number of costly modular exponentiations (MEs). With the proliferation of resource-constrained (mobile) devices and advancements in cloud computing, delegation of such expensive computations to powerful server providers has gained lots of attention. In this paper, we address the problem of verifiably secure delegation of MEs using two servers, where at most one of which is assumed to be malicious (the OMTUP-model). We first show verifiability issues of two recent schemes: We show that a scheme from IndoCrypt 2016 does not offer full verifiability, and that a scheme for nn simultaneous MEs from AsiaCCS 2016 is verifiable only with a probability 0.59090.5909 instead of the author\u27s claim with a probability 0.99550.9955 for n=10n=10. Then, we propose the first non-interactive fully verifiable secure delegation scheme by hiding the modulus via Chinese Remainder Theorem (CRT). Our scheme improves also the computational efficiency of the previous schemes considerably. Hence, we provide a lightweight delegation enabling weak clients to securely and verifiably delegate MEs without any expensive local computation (neither online nor offline). The proposed scheme is highly useful for devices having (a) only ultra-lightweight memory, and (b) limited computational power (e.g. sensor nodes, RFID tags)

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics

    Quantum nature of a strongly-coupled single quantum dot-cavity system

    Get PDF
    Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is in strong coupling with a cavity mode1,2, it is possible to realize key quantum information processing (QIP) tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks in the solid state is clearly desirable, and coupling semiconductor self-assembled quantum dots (QDs) to monolithic optical cavities is a promising route to this end. However, validating the efficacy of QDs in QIP applications requires confirmation of the quantum nature of the QD-cavity system in the strong coupling regime. Here we find a confirmation by observing quantum correlations in photoluminescence (PL) from a photonic crystal (PC) nanocavity3-5 interacting with one, and only one, QD located precisely at the cavity electric field maximum. When off-resonance, photon emission from the cavity mode and QD excitons is anti-correlated at the level of single quanta, proving that the mode is driven solely by the QD despite an energy mis-match between cavity and excitons. When tuned into resonance, the exciton and photon enter the strong-coupling regime of cavity-QED and the QD lifetime reduces by a factor of 120. The photon stream from the cavity becomes anti-bunched, proving that the coupled exciton/photon system is in the quantum anharmonic regime. Our observations unequivocally show that QIP tasks requiring the quantum nonlinear regime are achievable in the solid state.Comment: 14 pages 4 figure
    corecore