945 research outputs found
Crop-phenology and LANDSAT-based irrigated lands inventory in the high plains
Optimal LANDSAT image dates for 1980 were identified based on the weekly crop-weather reports for Colorado, New Mexico, South Dakota, Texas, Oklahoma, Kansas, Nebraska, and Wyoming. The 1979 agricultural statistics data were entered into computer files and a revised questionnaire was developed and mailed to ASCS county agents. A set of computer programs was developed to allow the preparation of computer-assisted graphic displays of much of the collected data
Crop phenology and LANDSAT-based irrigated lands inventory in the high plains
The activity concentrated on identifying crop and irrigation data sources for the eight states within the High Plains Aquifer and making contacts concerning the nature of these data. A mail questionnaire was developed to gather specific data not routinely reported through standard data collection channels. Input/output routines were designed for High Plains crop and irrigation data and initial statistical data on crops were input to computer files
Aerothermodynamic Assessment of Corrugated Panel Thermal Protection Systems
The feasibility of using corrugated panels as a thermal protection system for an advanced space transportation vehicle was investigated. The study consisted of two major tasks: development of improved correlations for wind tunnel heat transfer and pressure data to yield design techniques, and application of the design techniques to determine if corrugated panels have application future aerospace vehicles. A single-stage-to-orbit vehicle was used to assess advantages and aerothermodynamic penalties associated with use of such panels. In the correlation task, experimental turbulent heat transfer and pressure data obtained on corrugation roughened surfaces during wind tunnel testing were analyzed and compared with flat plate data. The correlations and data comparisons included the effects of a large range of geometric, inviscid flow, internal boundary layer, and bulk boundary layer parameters in supersonic and hypersonic flow
Modeling pN2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures
Nitrogen is a major nutrient for all life on Earth and could plausibly play a
similar role in extraterrestrial biospheres. The major reservoir of nitrogen at
Earth's surface is atmospheric N2, but recent studies have proposed that the
size of this reservoir may have fluctuated significantly over the course of
Earth's history with particularly low levels in the Neoarchean - presumably as
a result of biological activity. We used a biogeochemical box model to test
which conditions are necessary to cause large swings in atmospheric N2
pressure. Parameters for our model are constrained by observations of modern
Earth and reconstructions of biomass burial and oxidative weathering in deep
time. A 1-D climate model was used to model potential effects on atmospheric
climate. In a second set of tests, we perturbed our box model to investigate
which parameters have the greatest impact on the evolution of atmospheric pN2
and consider possible implications for nitrogen cycling on other planets. Our
results suggest that (a) a high rate of biomass burial would have been needed
in the Archean to draw down atmospheric pN2 to less than half modern levels,
(b) the resulting effect on temperature could probably have been compensated by
increasing solar luminosity and a mild increase in pCO2, and (c) atmospheric
oxygenation could have initiated a stepwise pN2 rebound through oxidative
weathering. In general, life appears to be necessary for significant
atmospheric pN2 swings on Earth-like planets. Our results further support the
idea that an exoplanetary atmosphere rich in both N2 and O2 is a signature of
an oxygen-producing biosphere.Comment: 33 pages, 11 figures, 2 tables (includes appendix), published in
Astrobiolog
Direct comparison between potential landscape and local density of states in a disordered two-dimensional electron system
The local density of states (LDOS) of the adsorbate induced two-dimensional
electron system (2DES) on n-InAs(110) is studied by low-temperature scanning
tunneling spectroscopy. The LDOS exhibits irregular structures with fluctuation
lengths decreasing with increasing energy. Fourier transformation reveals that
the k-values of the unperturbed 2DES dominate the LDOS, but additional lower
k-values contribute significantly. To clarify the origin of the additional
k-space intensity, we measure the potential landscape of the same 2DES area
with the help of the tip induced quantum dot. This allows to calculate the
expected LDOS from the single particle Schroedinger equation and to directly
compare it with the measured one. Reasonable correspondance between calculated
and measured LDOS is found.Comment: 7 pages, 4 figures, submitted to PR
Characterization of immune response to neurofilament light in experimental autoimmune encephalomyelitis
PMCID: PMC3856490This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.PMCID: PMC385649
Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background
We describe a general approach to detection of transient gravitational-wave
signals in the presence of non-Gaussian background noise. We prove that under
quite general conditions, the ratio of the likelihood of observed data to
contain a signal to the likelihood of it being a noise fluctuation provides
optimal ranking for the candidate events found in an experiment. The
likelihood-ratio ranking allows us to combine different kinds of data into a
single analysis. We apply the general framework to the problem of unifying the
results of independent experiments and the problem of accounting for
non-Gaussian artifacts in the searches for gravitational waves from compact
binary coalescence in LIGO data. We show analytically and confirm through
simulations that in both cases the likelihood ratio statistic results in an
improved analysis.Comment: 10 pages, 6 figure
Ground Water in the Kentucky River Basin
Most private wells in the Kentucky River Basin are in unconfined or semi-confined bedrock aquifers. Within these aquifers, high-yield zones are irregularly distributed. The most productive wells are drilled into fractured bedrock and alluvium along the Kentucky River floodplain. The data indicate that ground water acts as a buffer to peak and low flows in Kentucky River Basin streams. At current withdrawal rates, ground-water usage does not seem to have an adverse impact on the Kentucky River. Privately owned ground-water sources supply approximately 135,000 people living in the basin-approximately 19 percent of the total population and 36 percent of the rural population. More than 50 percent of residential water supplies in eastern Kentucky rely on ground water. If aquifers are protected from pollution by wellhead protection programs and old wells are retrofitted to prevent direct contamination, then ground water will continue to provide a reliable water supply in many rural areas of the basin. However, for most of the basin, few wells will have yields adequate to supply a large demand. Ground water from present wells will not provide an adequate supply for communities with a population of over a few thousand. Limited discharge data available for springs and large wells in the basin strongly suggest that the potential for ground water to supplement current supplies should not be ignored. Discharge from well fields and springs could be used to augment surface supplies during drought. A better understanding of the distribution and quality of ground-water resources is crucial for the citizens of the basin to fully benefit from ground water
- …