51 research outputs found

    Lobe Specific Ca2+-Calmodulin Nano-Domain in Neuronal Spines: A Single Molecule Level Analysis

    Get PDF
    Calmodulin (CaM) is a ubiquitous Ca2+ buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca2+-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca2+-CaM-dependent enzymes: Ca2+/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca2+ and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca2+ ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca2+ and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca2+ signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca2+-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca2+ channels, and to the microscopic injection rate of Ca2+ ions. We also demonstrate that Ca2+ saturation takes place via two different pathways depending on the Ca2+ injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca2+ sensors that can differentially transduce Ca2+ influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca2+-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity

    Social jetlag, obesity and metabolic disorder: Investigation in a cohort study.

    Get PDF
    Background: Obesity is one of the leading causes of preventable death worldwide. Circadian rhythms are known to control both sleep timing and energy homeostasis, and disruptions in circadian rhythms have been linked with metabolic dysfunction and obesity-associated disease. In previous research, social jetlag, a measure of chronic circadian disruption caused by the discrepancy between our internal versus social clocks, was associated with elevated self-reported body mass index, possibly indicative of a more generalized association with obesity and metabolic dysfunction. Methods: We studied participants from the population-representative Dunedin Longitudinal Study (N=1037) to determine whether social jetlag was associated with clinically assessed measurements of metabolic phenotypes and disease indicators for obesity-related disease, specifically, indicators of inflammation and diabetes. Results: Our analysis was restricted to N=815 non-shift workers in our cohort. Among these participants, we found that social jetlag was associated with numerous clinically assessed measures of metabolic dysfunction and obesity. We distinguished between obese individuals who were metabolically healthy versus unhealthy, and found higher social jetlag levels in metabolically unhealthy obese individuals. Among metabolically unhealthy obese individuals, social jetlag was additionally associated with elevated glycated hemoglobin and an indicator of inflammation. Conclusions: The findings are consistent with the possibility that ‘living against our internal clock’ may contribute to metabolic dysfunction and its consequences. Further research aimed at understanding that the physiology and social features of social jetlag may inform obesity prevention and have ramifications for policies and practices that contribute to increased social jetlag, such as work schedules and daylight savings time

    Methanotrophs in moss

    No full text
    • …
    corecore