41 research outputs found

    Gauge-invariant critical exponents for the Ginzburg-Landau model

    Full text link
    The critical behavior of the Ginzburg-Landau model is described in a manifestly gauge-invariant manner. The gauge-invariant correlation-function exponent is computed to first order in the 4d4-d and 1/n1/n-expansion, and found to agree with the ordinary exponent obtained in the covariant gauge, with the parameter α=1d\alpha=1-d in the gauge-fixing term (μAμ)2/2α(\partial_\mu A_\mu)^2 /2 \alpha.Comment: 4 pages, no figure

    Critical Behavior of the Meissner Transition in the Lattice London Superconductor

    Full text link
    We carry out Monte Carlo simulations of the three dimensional (3D) lattice London superconductor in zero applied magnetic field, making a detailed finite size scaling analysis of the Meissner transition. We find that the magnetic penetration length \lambda, and the correlation length \xi, scale as \lambda ~ \xi ~ |t|^{-\nu}, with \nu = 0.66 \pm 0.03, consistent with ordinary 3D XY universality, \nu_XY ~ 2/3. Our results confirm the anomalous scaling dimension of magnetic field correlations at T_c.Comment: 4 pages, 5 ps figure

    Critical Exponents of the Superconducting Phase Transition

    Full text link
    We study the critical exponents of the superconducting phase transition in the context of renormalization group theory starting from a dual formulation of the Ginzburg-Landau theory. The dual formulation describes a loop gas of Abrikosov flux tubes which proliferate when the critical temperature is approached from below. In contrast to the Ginzburg-Landau theory, it has a spontaneously broken global symmetry and possesses an infrared stable fixed point. The exponents coincide with those of a superfluid with reversed temperature axis.Comment: Postscript file. For related work see www adress http://www.physik.fu-berlin.de/kleiner_re.html in our homepage http://www.physik.fu-berlin.de/kleinert.htm

    Critical behavior of Ginzburg-Landau model coupled to massless Dirac fermions

    Full text link
    We point out interesting effects of additional massless Dirac fermions with N_F colors upon the critical behavior of the Ginzburg-Landau model. For increasing N_F, the model is driven into the type II regime of superconductivity. The critical exponents are given as a function of N_F.Comment: RevTex4, 4 pages, 1 figure; author information and latest update to this paper at http://www.physik.fu-berlin.de/~kleinert/institution.html; version 2: new references and comments on chiral symmetry breaking adde

    Magnetic field induced finite size effect in type-II superconductors

    Get PDF
    We explore the occurrence of a magnetic field induced finite size effect on the specific heat and correlation lengths of anisotropic type-II superconductors near the zero field transition temperature Tc. Since near the zero field transition thermal fluctuations are expected to dominate and with increasing field strength these fluctuations become one dimensional, whereupon the effect of fluctuations increases, it appears unavoidable to account for thermal fluctuations. Invoking the scaling theory of critical phenomena it is shown that the specific heat data of nearly optimally doped YBa2Cu3O7-x are inconsistent with the traditional mean-field and lowest Landau level predictions of a continuous superconductor to normal state transition along an upper critical field Hc2(T). On the contrary, we observe agreement with a magnetic field induced finite size effect, whereupon even the correlation length longitudinal to the applied field H cannot grow beyond the limiting magnetic length L(H). It arises because with increasing magnetic field the density of vortex lines becomes greater, but this cannot continue indefinitely. L(H) is then roughly set on the proximity of vortex lines by the overlapping of their cores. Thus, the shift and the rounding of the specific heat peak in an applied field is traced back to a magnetic field induced finite size effect in the correlation length longitudinal to the applied field.Comment: 8 pages, 4 figure

    Critical behaviour of the Ginzburg-Landau model in the type II region

    Get PDF
    We study the critical behaviour of the three-dimensional U(1) gauge+Higgs theory (Ginzburg-Landau model) at large scalar self-coupling \lambda (``type II region'') by measuring various correlation lengths as well as the Abrikosov-Nielsen-Olesen vortex tension. We identify different scaling regions as the transition is approached from below, and carry out detailed comparisons with the criticality of the 3d O(2) symmetric scalar theory.Comment: Lattice2001(higgssusy), 3 page

    Self-Duality in Superconductor-Insulator Quantum Phase Transitions

    Full text link
    It is argued that close to a Coulomb interacting quantum critical point, the interaction between two vortices in a disordered superconducting thin film separated by a distance rr changes from logarithmic in the mean-field region to 1/r1/r in the region dominated by quantum critical fluctuations. This gives support to the charge-vortex duality picture of the observed reflection symmetry in the current-voltage characteristics on both sides of the transition.Comment: 4 pages, no figures, 2nd version: title (slightly) changed and text accordingl

    Numerical study of duality and universality in a frozen superconductor

    Full text link
    The three-dimensional integer-valued lattice gauge theory, which is also known as a "frozen superconductor," can be obtained as a certain limit of the Ginzburg-Landau theory of superconductivity, and is believed to be in the same universality class. It is also exactly dual to the three-dimensional XY model. We use this duality to demonstrate the practicality of recently developed methods for studying topological defects, and investigate the critical behavior of the phase transition using numerical Monte Carlo simulations of both theories. On the gauge theory side, we concentrate on the vortex tension and the penetration depth, which map onto the correlation lengths of the order parameter and the Noether current in the XY model, respectively. We show how these quantities behave near the critical point, and that the penetration depth exhibits critical scaling only very close to the transition point. This may explain the failure of superconductor experiments to see the inverted XY model scaling.Comment: 17 pages, 18 figures. Updated to match the version published in PRB (http://link.aps.org/abstract/PRB/v67/e014525) on 27 Jan 200

    Scaling critical behavior of superconductors at zero magnetic field

    Full text link
    We consider the scaling behavior in the critical domain of superconductors at zero external magnetic field. The first part of the paper is concerned with the Ginzburg-Landau model in the zero magnetic field Meissner phase. We discuss the scaling behavior of the superfluid density and we give an alternative proof of Josephson's relation for a charged superfluid. This proof is obtained as a consequence of an exact renormalization group equation for the photon mass. We obtain Josephson's relation directly in the form ρstν\rho_{s}\sim t^{\nu}, that is, we do not need to assume that the hyperscaling relation holds. Next, we give an interpretation of a recent experiment performed in thin films of YBa2Cu3O7δYBa_{2}Cu_{3}O_{7-\delta}. We argue that the measured mean field like behavior of the penetration depth exponent ν\nu' is possibly associated with a non-trivial critical behavior and we predict the exponents ν=1\nu=1 and α=1\alpha=-1 for the correlation lenght and specific heat, respectively. In the second part of the paper we discuss the scaling behavior in the continuum dual Ginzburg-Landau model. After reviewing lattice duality in the Ginzburg-Landau model, we discuss the continuum dual version by considering a family of scalings characterized by a parameter ζ\zeta introduced such that mh,02tζm_{h,0}^2\sim t^{\zeta}, where mh,0m_{h,0} is the bare mass of the magnetic induction field. We discuss the difficulties in identifying the renormalized magnetic induction mass with the photon mass. We show that the only way to have a critical regime with ν=ν2/3\nu'=\nu\approx 2/3 is having ζ4/3\zeta\approx 4/3, that is, with mh,0m_{h,0} having the scaling behavior of the renormalized photon mass.Comment: RevTex, 15 pages, no figures; the subsection III-C has been removed due to a mistak

    Anomalous dimensions and phase transitions in superconductors

    Full text link
    The anomalous scaling in the Ginzburg-Landau model for the superconducting phase transition is studied. It is argued that the negative sign of the η\eta exponent is a consequence of a special singular behavior in momentum space. The negative sign of η\eta comes from the divergence of the critical correlation function at finite distances. This behavior implies the existence of a Lifshitz point in the phase diagram. The anomalous scaling of the vector potential is also discussed. It is shown that the anomalous dimension of the vector potential ηA=4d\eta_A=4-d has important consequences for the critical dynamics in superconductors. The frequency-dependent conductivity is shown to obey the scaling σ(ω)ξz2\sigma(\omega)\sim\xi^{z-2}. The prediction z3.7z\approx 3.7 is obtained from existing Monte Carlo data.Comment: RevTex, 20 pages, no figures; small changes; version accepted in PR
    corecore