255 research outputs found
Fitting formulae for evolution tracks of massive stars under extreme metal poor environments for population synthesis calculations and star cluster simulations
We have devised fitting formulae for evolution tracks of massive stars with under extreme metal poor (EMP) environments for , and , where and are the solar mass and metallicity, respectively. Our fitting formulae are based on reference stellar models which we have newly obtained by simulating the time evolutions of EMP stars. Our fitting formulae take into account stars ending with blue supergiant (BSG) stars, and stars skipping Hertzsprung gap (HG) phases and blue loops, which are characteristics of massive EMP stars. In our fitting formulae, stars may remain BSG stars when they finish their core Helium burning (CHeB) phases. Our fitting formulae are in good agreement with our stellar evolution models. We can use these fitting formulae on the SSE, BSE, NBODY4, and NBODY6 codes, which are widely used for population synthesis calculations and star cluster simulations. These fitting formulae should be useful to make theoretical templates of binary black holes formed under EMP environments
Prospects for improving the sensitivity of KAGRA gravitational wave detector
KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRA's possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-of-the-art detectors, KAGRA requires different investigations for the upgrade since it is the only detector which employs cryogenic cooling of the test mass mirrors. In this paper, investigations on the upgrade plans which can be realized by changing the input laser power, increasing the mirror mass, and injecting frequency dependent squeezed vacuum are presented. We show how each upgrade affects to the detector frequency bands and also discuss impacts on gravitational-wave science. We then propose an effective progression of upgrades based on technical feasibility and scientific scenarios
Static structure factor of liquid parahydrogen
7 págs.; 5 figs. ; PACS number~s!: 61.20.2p, 61.12.2q, 78.70.2gThe single-differential neutron-scattering cross section of liquid parahydrogen has been measured at 15.2 K and 2 bars of applied pressure by means of low-energy neutron diffraction. Our experimental conditions enable the direct observation of the peak of the liquid structure factor and therefore largely improve the signal-to-noise ratio with respect to measurements carried out using higher-energy neutron diffraction. This avoids the need of performing corrections of approximate nature to the measured cross section that is dominated by molecular rotational components if measured by conventional neutron diffraction. ©2004 American Physical SocietyPeer Reviewe
The role of thyroid hormone nuclear receptors in the heart: evidence from pharmacological approaches
This review evaluates the hypothesis that the cardiac effects of amiodarone can be explained—at least partly—by the induction of a local ‘hypothyroid-like condition’ in the heart. Evidence supporting the hypothesis comprises the observation that amiodarone exerts an inhibitory effect on the binding of T3 to thyroid hormone receptors (TR) alpha-1 and beta-1 in vitro, and on the expression of particular T3-dependent genes in vivo. In the heart, amiodarone decreases heart rate and alpha myosin heavy chain expression (mediated via TR alpha-1), and increases sarcoplasmic reticulum calcium-activated ATPase and beta myosin heavy chain expression (mediated via TR beta-1). Recent data show a significant similarity in expression profiles of 8,435 genes in the heart of hypothyroid and amiodarone-treated animals, although similarities do not always exist in transcripts of ion channel genes. Induction of a hypothyroid cardiac phenotype by amiodarone may be advantageous by decreasing energy demands and increasing energy availability
Cardiomyocyte-specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: an adaptative response or part of the problem?
Recent studies in various rodent models of pathologic ventricular hypertrophy report the re-expression of deiodinase type 3 (D3) in cardiomyocytes. D3 inactivates thyroid hormone (T3) and is mainly expressed in tissues during development. The stimulation of D3 activity in ventricular hypertrophy and subsequent heart failure is associated with severe impairment of cardiac T3 signaling. Hypoxia-induced signaling appears to drive D3 expression in the hypertrophic cardiomyocyte, but other signaling cascades implicated in hypertrophy are also capable of stimulating transcription of the DIO3 gene. Many cardiac genes are transcriptionally regulated by T3 and impairment of T3 signaling will not only reduce energy turnover, but also lead to changes in gene expression that contribute to contractile dysfunction in pathologic remodeling. Whether stimulation of D3 activity and the ensuing local T3-deficiency is an adaptive response of the stressed heart or part of the pathologic signaling network leading to heart failure, remains to be established
KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector
The recent detections of gravitational waves (GWs) reported by LIGO/Virgocollaborations have made significant impact on physics and astronomy. A globalnetwork of GW detectors will play a key role to solve the unknown nature of thesources in coordinated observations with astronomical telescopes and detectors.Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitationalwave Telescope), a new GW detector with two 3-km baseline arms arranged in theshape of an "L", located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan.KAGRA's design is similar to those of the second generations such as AdvancedLIGO/Virgo, but it will be operating at the cryogenic temperature with sapphiremirrors. This low temperature feature is advantageous for improving thesensitivity around 100 Hz and is considered as an important feature for thethird generation GW detector concept (e.g. Einstein Telescope of Europe orCosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GWdetector based on laser interferometry. The installation and commissioning ofKAGRA is underway and its cryogenic systems have been successfully tested inMay, 2018. KAGRA's first observation run is scheduled in late 2019, aiming tojoin the third observation run (O3) of the advanced LIGO/Virgo network. In thiswork, we describe a brief history of KAGRA and highlights of main feature. Wealso discuss the prospects of GW observation with KAGRA in the era of O3. Whenoperating along with the existing GW detectors, KAGRA will be helpful to locatea GW source more accurately and to determine the source parameters with higherprecision, providing information for follow-up observations of a GW triggercandidate
Application of independent component analysis to the iKAGRA data
We apply independent component analysis (ICA) to real data from a gravitational wave detector for the first time. Specifically, we use the iKAGRA data taken in April 2016, and calculate the correlations between the gravitational wave strain channel and 35 physical environmental channels. Using a couple of seismic channels which are found to be strongly correlated with the strain, we perform ICA. Injecting a sinusoidal continuous signal in the strain channel, we find that ICA recovers correct parameters with enhanced signal-to-noise ratio, which demonstrates the usefulness of this method. Among the two implementations of ICA used here, we find the correlation method yields the optimal results for the case of environmental noise acting on the strain channel linearly
Emerging Monogenic Complex Hyperkinetic Disorders
PURPOSE OF REVIEW: Hyperkinetic movement disorders can manifest alone or as part of complex phenotypes. In the era of next-generation sequencing (NGS), the list of monogenic complex movement disorders is rapidly growing. This review will explore the main features of these newly identified conditions.
RECENT FINDINGS: Mutations in ADCY5 and PDE10A have been identified as important causes of childhood-onset dyskinesias and KMT2B mutations as one of the most frequent causes of complex dystonia in children. The delineation of the phenotypic spectrum associated with mutations in ATP1A3, FOXG1, GNAO1, GRIN1, FRRS1L, and TBC1D24 is revealing an expanding genetic overlap between epileptic encephalopathies, developmental delay/intellectual disability, and hyperkinetic movement disorders,.
SUMMARY: Thanks to NGS, the etiology of several complex hyperkinetic movement disorders has been elucidated. Importantly, NGS is changing the way clinicians diagnose these complex conditions. Shared molecular pathways, involved in early stages of brain development and normal synaptic transmission, underlie basal ganglia dysfunction, epilepsy, and other neurodevelopmental disorders
- …