45 research outputs found

    Determination of Faecal Contamination of the Groundwater Resources from Tano Districts of Ghana

    Get PDF
    This paper seeks to report on whether there are faecal contaminants in the groundwater resources within the Tano Districts, where people use groundwater as their source of drinking water and for other domestic purposes. Total Coliforms, Faecal Coliforms, Enterococci, E.coli and Salmonella were employed as faecal indicators in this study. Determination of these faecal indicators in the samples was done using the Most Probable Number (MPN) method. A simple random sampling method was employed to get the sample size of 15 wells. The results of this study indicate that the water in the selected wells had faecal contaminants, proved by the presence of the faecal determinants in the water samples collected The presence of these organisms is an indication that water within the wells from the study area has been faecally contaminated with animal or human faeces. These bacteria are used as faecal indicators as an evidence of possible sewage contamination because, they are commonly found in animal or human faeces. Therefore, the fact that these faecal indicators have been detected in water sampled from the selected wells means that pathogens might also be present. The study recommends treatment of the groundwater supplies or encourages the use of the home water treatment.In an attempt to solve the problem of the faecal contamination of the selected wells, a future research should be conducted to determine the source of faecal contamination of ground water in wells at the Tano Districts

    Malaria Elimination: The Role and Value of Sero-Surveillance

    Get PDF
    As countries move from intense malaria transmission to low transmission there will be a demand for more sensitive tools and approaches in tracking malaria transmission dynamics. Surveillance tools that are sensitive in tracking real time infectious bites as well as infectious reservoir will be preferred to counting number of cases in the hospital or parasite prevalence. The acquisition and maintenance of anti-malarial antibodies is a direct function of parasite exposure, seroprevalence rates has been used as an efficient tool in assessing malaria endemicity and confirming malaria elimination. Plasmodium antibodies are explicit biomarkers that can be utilised to track parasite exposure over more extensive time spans than microscopy, rapid diagnostic testing or molecular testing and the conventional entomological inoculation rate. Seroprevalence studies can therefore help monitor the impact of malaria control interventions, especially when the parasite occurrence is low. As a result, antibody responses to Anopheles salivary proteins or Plasmodium species may potentially offer reliable information of recent or past exposure; recognise short-term or gradual changes in exposure to Plasmodium infection or to estimate individual-level exposure to infection. This book chapter will present about four studies we have conducted across eastern and western Africa on the efficiency of salivary gland proteins and antimalarial antibodies in tracking malaria transmission intensity. We hope that these could be used as surveillance tools in malaria elimination efforts

    Blood-feeding behavior of anopheles gambiae and anopheles melas in Ghana, Western Africa

    Get PDF
    金沢大学理工研究域自然システム学系Anopheles gambiae is the predominant malaria vector species in Ghana, western Africa, with a strong local presence of Anopheles melas Theobald along the southern coast. We studied the biting behavior of these two species of the Anopheles gambiae complex inland and at the coast in Ghana, with special attention to the local peoples\u27 preference for outdoor sleeping. We collected mosquitoes at two sites in 2007, representing the moist semideciduous forest zone and the strand and mangrove zone, and the sampling was repeated in the dry and rainy seasons. Sampled mosquitoes were examined for species, parity and size (wing length), and we identified the hosts of their bloodmeals. We interviewed 288 of the village people to determine where and when they slept outdoors. Our study confirmed that An. gambiae is the only species of the An. gambiae complex in the Ashanti region and revealed that An. melas is highly dominant on the western coast of Ghana. Both species showed high human blood rates in indoor resting mosquito samples. More people sleep outside on the coast than inland. An. melas demonstrated high exophily. An. gambiae bit people more frequently indoors and did so more often during the dry season than in the rainy season. We suggest that the degree of exophily in An. melas may be affected by humidity and the availability of human as well as by the mosquitoes\u27 innate habits. © 2010 Entomological Society of America

    Serological evidence of vector and parasite exposure in Southern Ghana: the dynamics of malaria transmission intensity.

    Get PDF
    BACKGROUND: Seroepidemiology provides robust estimates for tracking malaria transmission when intensity is low and useful when there is no baseline entomological data. Serological evidence of exposure to malaria vectors and parasite contribute to our understanding of the risk of pathogen transmission, and facilitates implementation of targeted interventions. Ab to Anopheles gambiae salivary peptide (gSG6-P1) and merozoite surface protein one (MSP-1(19)) reflect human exposure to malaria vectors and parasites. This study estimated malaria transmission dynamics using serological evidence of vector and parasite exposure in southern Ghana. METHODS: Total IgG responses to both antigens in an age stratified cohort (14) were measured from South-eastern Ghana. 295 randomly selected sera were analyzed from archived samples belonging to a cohort study that were followed at 3 consecutive survey months (n = 885); February, May and August 2009. Temporal variations in seroprevalence of both antigens as well as differences between the age-stratified cohorts were determined by χ (2) test with p < 0.05 statistically significant. Non-parametric repeated ANOVA - Friedman's test was used to test differences in antibody levels. Seroprevalence data were fitted to reversible catalytic model to estimate sero-conversion rates. RESULTS: Whereas parasite prevalence was generally low 2.4%, 2.7% and 2.4% with no apparent trends with season, seroprevalence to both gSG6-P1 and MSP1(19) were high (59%, 50.9%, 52.2%) and 57.6%, 52.3% and 43.6% in respective order from Feb. to August. Repeated measures ANOVA showed differences in median antibody levels across surveys with specific significant differences between February and May but not August by post hoc Dunn's multiple comparison tests for gSG6-P1. For MSP1(19), no differences were observed in antibody levels between February and May but a significant decline was observed from May to August. Seroconversion rates for gSG6-P1 increased by 1.5 folds from February to August and 3 folds for MSP1(19). CONCLUSION: Data suggests exposure to infectious bites may be declining whereas mosquito bites remains high. Sustained malaria control efforts and surveillance are needed to drive malaria further down and to prevent catastrophic rebound. Operational factors for scaling up have been discussed

    SARS-CoV-2 viral shedding and transmission dynamics : implications of WHO COVID-19 discharge guidelines

    Get PDF
    This work was supported through the Alliance for Accelerating Excellence in Science in Africa (AESA), a funding, agenda-setting, programme management initiative of the African Academy of Sciences (AAS), the African- Union Development Agency (AUDA-NEPAD), founding and funding global partners and through a resolution of the summit of African Union Heads of Governments.The evolving nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has necessitated periodic revisions of COVID-19 patient treatment and discharge guidelines. Since the identification of the first COVID-19 cases in November 2019, the World Health Organization (WHO) has played a crucial role in tackling the country-level pandemic preparedness and patient management protocols. Among others, the WHO provided a guideline on the clinical management of COVID-19 patients according to which patients can be released from isolation centers on the 10th day following clinical symptom manifestation, with a minimum of 72 additional hours following the resolution of symptoms. However, emerging direct evidence indicating the possibility of viral shedding 14 days after the onset of symptoms called for evaluation of the current WHO discharge recommendations. In this review article, we carried out comprehensive literature analysis of viral shedding with specific focus on the duration of viral shedding and infectivity in asymptomatic and symptomatic (mild, moderate, and severe forms) COVID-19 patients. Our literature search indicates that even though, there are specific instances where the current protocols may not be applicable ( such as in immune-compromised patients there is no strong evidence to contradict the current WHO discharge criteria.Publisher PDFPeer reviewe

    Estimating malaria transmission risk through surveillance of human–vector interactions in northern Ghana

    Get PDF
    Background: Vector bionomics are important aspects of vector-borne disease control programs. Mosquito-biting risks are affected by environmental, mosquito behavior and human factors, which are important for assessing exposure risk and intervention impacts. This study estimated malaria transmission risk based on vector–human interactions in northern Ghana, where indoor residual spraying (IRS) and insecticide-treated nets (ITNs) have been deployed. Methods: Indoor and outdoor human biting rates (HBRs) were measured using monthly human landing catches (HLCs) from June 2017 to April 2019. Mosquitoes collected were identified to species level, and Anopheles gambiae sensu lato (An. gambiae s.l.) samples were examined for parity and infectivity. The HBRs were adjusted using mosquito parity and human behavioral observations. Results: Anopheles gambiae was the main vector species in the IRS (81%) and control (83%) communities. Indoor and outdoor HBRs were similar in both the IRS intervention (10.6 vs. 11.3 bites per person per night [b/p/n]; z = −0.33, P = 0.745) and control communities (18.8 vs. 16.4 b/p/n; z = 1.57, P = 0.115). The mean proportion of parous An. gambiae s.l. was lower in IRS communities (44.6%) than in control communities (71.7%). After adjusting for human behavior observations and parity, the combined effect of IRS and ITN utilization (IRS: 37.8%; control: 57.3%) on reducing malaria transmission risk was 58% in IRS + ITN communities and 27% in control communities with ITNs alone (z = −4.07, P < 0.001). However, this also revealed that about 41% and 31% of outdoor adjusted bites in IRS and control communities respectively, occurred before bed time (10:00 pm). The mean directly measured annual entomologic inoculation rates (EIRs) during the study were 6.1 infective bites per person per year (ib/p/yr) for IRS communities and 16.3 ib/p/yr for control communities. After considering vector survival and observed human behavior, the estimated EIR for IRS communities was 1.8 ib/p/yr, which represents about a 70% overestimation of risk compared to the directly measured EIR; for control communities, it was 13.6 ib/p/yr (16% overestimation). Conclusion: Indoor residual spraying significantly impacted entomological indicators of malaria transmission. The results of this study indicate that vector bionomics alone do not provide an accurate assessment of malaria transmission exposure risk. By accounting for human behavior parameters, we found that high coverage of ITNs alone had less impact on malaria transmission indices than combining ITNs with IRS, likely due to observed low net use. Reinforcing effective communication for behavioral change in net use and IRS could further reduce malaria transmission

    SARS-CoV-2 Viral Shedding and Transmission Dynamics: Implications of WHO COVID-19 Discharge Guidelines

    Get PDF
    The evolving nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has necessitated periodic revisions of COVID-19 patient treatment and discharge guidelines. Since the identification of the first COVID-19 cases in November 2019, the World Health Organization (WHO) has played a crucial role in tackling the country-level pandemic preparedness and patient management protocols. Among others, the WHO provided a guideline on the clinical management of COVID-19 patients according to which patients can be released from isolation centers on the 10th day following clinical symptom manifestation, with a minimum of 72 additional hours following the resolution of symptoms. However, emerging direct evidence indicating the possibility of viral shedding 14 days after the onset of symptoms called for evaluation of the current WHO discharge recommendations. In this review article, we carried out comprehensive literature analysis of viral shedding with specific focus on the duration of viral shedding and infectivity in asymptomatic and symptomatic (mild, moderate, and severe forms) COVID-19 patients. Our literature search indicates that even though, there are specific instances where the current protocols may not be applicable ( such as in immune-compromised patients there is no strong evidence to contradict the current WHO discharge criteria

    Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assessment of malaria endemicity at different altitudes and transmission intensities, in the era of dwindling vector densities in the highlands, will provide valuable information for malaria control and surveillance. Measurement of serum anti-malarial antibodies is a useful marker of malaria exposure that indicates long-term transmission potential. We studied the serologic evidence of malaria endemicity at two highland sites along a transmission intensity cline. An improved understanding of the micro-geographic variation in malaria exposure in the highland ecosystems will be relevant in planning effective malaria control.</p> <p>Methods</p> <p>Total IgG levels to <it>Plasmodium falciparum </it>MSP-1<sub>19 </sub>were measured in an age-stratified cohort (< 5, 5-14 and ≥ 15 years) in 795 participants from an uphill and valley bottom residents during low and high malaria transmission seasons. Antibody prevalence and level was compared between different localities. Regression analysis was performed to examine the association between antibody prevalence and parasite prevalence. Age-specific MSP-1<sub>19 </sub>seroprevalence data was fitted to a simple reversible catalytic model to investigate the relationship between parasite exposure and age.</p> <p>Results</p> <p>Higher MSP-1<sub>19 </sub>seroprevalence and density were observed in the valley residents than in the uphill dwellers. Adults (> 15 years) recorded high and stable immune response in spite of changing seasons. Lower responses were observed in children (≤ 15 years), which, fluctuated with changing seasons particularly in the valley residents. In the uphill population, annual seroconversion rate (SCR) was 8.3% and reversion rate was 3.0%, with seroprevalence reaching a plateau of 73.3% by age of 20. Contrary, in the valley bottom population, the annual SCR was 35.8% and the annual seroreversion rate was 3.5%, and seroprevalence in the population had reached 91.2% by age 10.</p> <p>Conclusion</p> <p>The study reveals the micro-geographic variation in malaria endemicity in the highland eco-system; this validates the usefulness of sero-epidemiological tools in assessing malaria endemicity in the era of decreasing sensitivity of conventional tools.</p
    corecore