35 research outputs found

    Imagining circles: empirical data and a perceptual model for the arc-size illusion

    Get PDF
    An essential part of visual object recognition is the evaluation of the curvature of both an object's outline as well as the contours on its surface. We studied a striking illusion of visual curvature--the arc-size illusion (ASI)--to gain insight into the visual coding of curvature. In the ASI, short arcs are perceived as flatter (less curved) compared to longer arcs of the same radius. We investigated if and how the ASI depends on (i) the physical size of the stimulus and (ii) on the length of the arc. Our results show that perceived curvature monotonically increases with arc length up to an arc angle of about 60°, thereafter remaining constant and equal to the perceived curvature of a full circle. We investigated if the misjudgment of curvature in the ASI translates into predictable biases for three other perceptual tasks: (i) judging the position of the centre of circular arcs; (ii) judging if two circular arcs fall on the circumference of the same (invisible) circle and (iii) interpolating the position of a point on the circumference of a circle defined by two circular arcs. We found that the biases in all the above tasks were reliably predicted by the same bias mediating the ASI. We present a simple model, based on the central angle subtended by an arc, that captures the data for all tasks. Importantly, we argue that the ASI and related biases are a consequence of the fact that an object's curvature is perceived as constant with viewing distance, in other words is perceptually scale invariant

    Feature specific segmentation in perceived structure-from-motion

    Get PDF
    AbstractMotion information is important to vision for extracting the 3-D (three-dimensional) structure of an object, as evidenced by the compelling percept of three-dimensionality attainable in displays which are purely motion-defined. It has recently been shown that when subjects view a rotating transparent cylinder of dots simulated with parallel projection, they rarely perceive rotation reversals which are physically introduced (Treue, Andersen, Ando & Hildreth, Vision Research, 35;1995:139–148). We show however that when the elements defining the cylinder are oriented, the number of perceived reversals increases systematically to near maximum as the difference between element orientations on the two surfaces increases. These results imply that structure-from-motion mechanisms are capable of exploiting local feature differences between the different surfaces of a moving object

    Facial expression aftereffect revealed by adaption to emotion-invisible dynamic bubbled faces

    Get PDF
    Visual adaptation is a powerful tool to probe the short-term plasticity of the visual system. Adapting to local features such as the oriented lines can distort our judgment of subsequently presented lines, the tilt aftereffect. The tilt aftereffect is believed to be processed at the low-level of the visual cortex, such as V1. Adaptation to faces, on the other hand, can produce significant aftereffects in high-level traits such as identity, expression, and ethnicity. However, whether face adaptation necessitate awareness of face features is debatable. In the current study, we investigated whether facial expression aftereffects (FEAE) can be generated by partially visible faces. We first generated partially visible faces using the bubbles technique, in which the face was seen through randomly positioned circular apertures, and selected the bubbled faces for which the subjects were unable to identify happy or sad expressions. When the subjects adapted to static displays of these partial faces, no significant FEAE was found. However, when the subjects adapted to a dynamic video display of a series of different partial faces, a significant FEAE was observed. In both conditions, subjects could not identify facial expression in the individual adapting faces. These results suggest that our visual system is able to integrate unrecognizable partial faces over a short period of time and that the integrated percept affects our judgment on subsequently presented faces. We conclude that FEAE can be generated by partial face with little facial expression cues, implying that our cognitive system fills-in the missing parts during adaptation, or the subcortical structures are activated by the bubbled faces without conscious recognition of emotion during adaptation

    Contrast discrimination at high contrasts reveals the influence of local light adaptation on contrast processing

    Get PDF
    AbstractPrevious measurements of contrast discrimination threshold, ΔC, as a function of pedestal contrast,C, for sine-wave gratings have shown a power law relationship between ΔC andC at suprathreshold levels of C. However, these studies have rarely used contrasts greater than 50%. Whittle (1986), using incremental and decremental patches, found that ΔC increased with C only up to about 50%. At higher contrasts it decreased. Since a periodic stimulus can be considered to be composed of increments and decrements, we thought we might find such an inverse U-shaped function for gratings if we used contrasts up to 100%. We tested this for both sine-wave and square-wave stimuli at spatial frequencies from 0.0625 to 8.0 c/deg. We found that for frequencies up to 0.5 c/deg, ΔC in nearly all cases ‘dipped down’ after about C = 50% contrast. At 4.0 and 8.0 c/deg, however, no dip-down occurred. Additional experiments showed that the dip-down was unlikely to be due to cortical long-term adaptation and most likely an effect of localized light adaptation to the dark bars. We argue that the absence of dip-down at high spatial frequencies was mainly due to the attenuation of contrast by the optics of the eye. As for the results of Whittle (1986), a Weber's Law in W = (Lmax − Lmin)Lmin describes the inverse U-shaped contrast discrimination function well. Two other contrast expressions also linearize the data on log-log plots. We show how some familiar notions about the physiological operation of localized light adaptation can easily account for the form of the contrast discrimination function. Finally we estimate the number of discriminable steps in contrast from detection threshold to maximum contrast for the various spatial frequencies tested

    Colour contrast influences perceived shape in combined shading and texture patterns

    No full text
    Malkoç, Gökhan (Dogus Author)The 'colour-shading effect' describes the phenomenon whereby a chromatic pattern influences perceived shape-from-shading in a luminance pattern. Specifically, the depth corrugations perceived in sinusoidal luminance gratings can be enhanced by spatially non-aligned, and suppressed by spatially aligned sinusoidal chromatic gratings. Here we examine whether colour contrast can influence perceived shape in patterns that combine shape-from-shading with shape-from-texture. Stimuli consisted of sinusoidal modulations of texture (defined by orientation), luminance and colour. When the texture and luminance modulations were suitably combined, one obtained a vivid impression of a corrugated depth surface. The addition of a colour grating to the texture-luminance combination was found to enhance the impression of depth when out-of-phase with the luminance modulation, and suppress the impression of depth when in-phase with the luminance modulation. The degree of depth enhancement and depth suppression was approximately constant across texture amplitude when measured linearly. In the absence of the luminance grating however, the colour grating had no phase-dependent affect on perceived depth. These results show that colour contrast modulates the contribution of shading to perceived shape in combined shading and texture patterns
    corecore