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Previous measurements of contrast discrimination threshold, AC, as a function of pedestal contrast, 
C, for sine-wave gratings have shown a power law relationship between AC and C at supra- 
threshold levels of C. However, these studies have rarely used contrasts greater than 50%. Whittle 
(1986), using incremental and decremental patches, found that AC increased with C only up to 
about 50%. At lnigher contrasts it decreased. Since a periodic stimulus can be considered to be 
composed of increments and decrements, we thought we might find such an inverse U-shaped 
function for gratings if we used contrasts up to 100%. We tested this for both sine-wave and square- 
wave stimuli at spatial frequencies from 0.0625 to 8.0 c/deg. We found that for frequencies up to 
0.5 c/deg, AC in nearly all cases 'dipped down' after about C = 50% contrast. At 4.0 and 8.0 c/deg, 
however, no dip-down occurred. Additional experiments showed that the dip-down was unlikely to 
be due to corticall long-term adaptation and most likely an effect of localized light adaptation to the 
dark bars. We argue that the absence of dip-down at high spatial frequencies was mainly due to the 
attenuation of contrast by the optics of the eye. As for the results of Whittle (1986), a Weber's Law 
in W = (Lmax - -  Lmin)]Lmin describes the inverse U-shaped contrast discrimination function well. 
Two other contrast expressions also linearize the data on log-log plots. We show how some familiar 
notions about the physiological operation of localized light adaptation can easily account for the 
form of the contrast discrimination function. Finally we estimate the number of discriminable steps 
in contrast from detection threshold to maximum contrast for the various spatial frequencies tested. 

Contrast discrimination Light adaptation Luminance gain control 

INTRODUCTION 

In a typical contrast discrimination experiment the 
subject is required to discriminate between two stimuli 
that differ in their contrasts: a "pedestal" of contrast C 
and a "pedestal-plus-incre, ment" of contrast C + AC. The 
minimum value of AC which can be reliably detected is 
known as the contrast discrimination threshold. The 
relationship between AC and C defines the contrast 
discrimination function and has important implications 
for the internal processirLg of contrast. The function is 
characteristically dipper shaped: as C increases from 
zero, AC first decreases and then increases (Campbell & 
Kulikowski, 1966; Foley & Legge, 1981; Legge & 
Kersten, 1983; Ross & Speed, 1991; Foley, 1994). The 
minimum value of AC occurs when C is at around 
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detection threshold. The increase at suprathreshold levels 
of C is often ascribed to a compressive nonlinearity in the 
internal response to contrast (Legge & Foley, 1980; 
Wilson, 1980; Greenlee & Heitger, 1988). Legge, 
Kersten and Burgess (1987) offered the alternative 
explanation of a linear contrast response function 
combined with multiplicative intemal noise, and more 
recently Foley (1994) has suggested that the increase in 
AC with C is due to divisive inhibition. Support for a 
compressive transducer function for contrast comes also 
from studies on contrast magnitude estimation (Gottes- 
man, Rubin & Legge, 1981), contrast or brightness 
scaling (Whittle, 1993) and contrast matching (Swanson, 
Wilson & Giese, 1984). Our data present a challenge to 
conventional notions about the rising suprathreshold 
portion of the contrast discrimination function. We have 
not attempted to incorporate both the dipper and 
suprathreshold parts of the function into a single model, 
since they are believed to be produced by different 
mechanisms (Georgeson & Georgeson, 1987; Foley, 
1994). 

Legge (1981) measured AC as a function of C for sine- 
wave gratings and showed that the rising part was well 
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fitted by the power law AC = kC", with the exponent n 
ranging from about 0.6 to 0.7 depending on spatial 
frequency. Bradley and Ohzawa (1986) also found a 
power-law relationship, with exponents from 0.7 to 0.9. 
Legge and Kersten (1983) measured contrast discrimi- 
nation with bar stimuli, and found a power-law relation- 
ship for both incremental (bright) and decremental (dark) 
bars, with the exponent averaging about 0.6. All these 
studies measured AC up to pedestal contrasts of only 
50%. An earlier and rarely cited study by Kohayakawa 
(1972) had, however, produced results inconsistent with 
the monotonic relationship implied by a power-law. 
Measuring AC up to C = 35% for 2.0 c/deg sine-wave 
gratings, Kohayakawa found that while thresholds 
increased up to about 25% contrast, they declined 
slightly thereafter. A greater decline, though at higher 
contrasts, was found by Whittle (1986), who used square 
incremental and decremental test patches to make the first 
measurements of contrast discrimination over the full 
range of pedestal contrasts. Whittle described his stimuli 
in terms of luminance differences AL and A2L, as 
illustrated in Fig. l(a and b). When A2L was plotted as 
a function AL, a different pattern of contrast discrimi- 
nation was found for increments and decrements, as 
illustrated schematically in Fig. l(d). For increments, A2L 
was proportional to AL throughout the suprathreshold 
contrast range. However, for decrements, A2L first 
increased with AL up to about half its maximum value 
and then progressively decreased as AL increased further 
still. In other words contrast discrimination for decre- 
ments, at least when measured in terms of A2L, improved 
as the decremental pedestal approached its black limit. 

2 The shape of the A L against AL function was therefore 
an inverse U-shape, with poorest contrast discrimination 
(the peak of the function) occurring when AL was about 
half its maximum value. 

A periodic stimulus such as a sine-wave grating can 
reasonably be considered to consist of both increments 
and decrements. What might one therefore expect to be 
the shape of its contrast discrimination function if 
measured up to full contrast, given the results of Whittle 
(1986)? The most parsimonious assumption is that the 
result would be the same in terms of contrast rather than 
luminance differences. Whittle found that if his incre- 
ment and decrement data were plotted in terms of 
Michelson Contrast C = (Zma x - Lmin)/(Zma x + Lmin) , in- 
stead of A2L and AL, then the increment and decrement 
data came together, with AC being an inverse U-shaped 
function of C in the suprathreshold contrast range, as 
shown in Fig. l(e). In the present paper we test whether 
such an inverse U-shaped function occurs for periodic 
stimuli if measured over the whole suprathreshold 
contrast range. 

METHODS 

Apparatus 

The stimuli were generated using the VSG2/1 Digital 
Signal Generator (Cambridge Research Systems) driven 
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FIGURE 1. Stimulus characteristics and results of Whittle's (1986) 
study on luminance discrimination using (a) incremental and Co) 
decremental patches. A2L is the minimal discriminable difference in 
luminance while AL is pedestal luminance minus background 
luminance. (c) Defining characteristics of stimuli used in experiments 
described here. (d)-(f) Schematic representation of Whittle's results: 
continuous rule = increment data, dashed rule = decrement data: (d) in 
terms of luminance differences AL; (e) in terms of contrast C where 
C=(Lmax-Lmin)/(Lmax+Lmin); (f) in terms of W, where 

W =  ( L m a  x - -  Lmin)/Lmi n. 

by a DELL 386 PC and displayed on a BARCO CDCT 
6551 RGB monitor, 

Calibration 

In any measurement of contrast increment thresholds, 
it is essential to ensure first that there is sufficient contrast 
resolution over the whole range, and second that the 
monitor is properly gamma-corrected. Since we go up to 
very high contrasts where both the nonlinearity and 
limited dynamic range of the monitor might make 
measurements suspect, we report our calibration proce- 
dures in some detail. 

The VSG2/1 Digital Signal Generator has three 14 bit 
(16384 levels) DACs (digital-to-analogue converters), 
one for each RGB channel, which can be mapped onto 
three 12 bit LUTs (look-up-tables), each thus having 
4096 intensity levels. In our experiments all three RGB 
channels were always set to the same DAC value, thus 
producing only black-white stimuli. Our calibration 
procedures therefore effectively deal with a single 
monochromatic monitor gamma. We first measured, with 
a UDT photometer, the luminance of the central bar of a 
0.05 c/cm square-wave (like one of our experimental 
stimuli), produced with an approximately linearized LUT 
at 5% contrast intervals between - 1 0 0 %  (when the 
central bar was dark) to +100% (central bar bright). 
Using these measurements we then generated, and 
checked, a precisely linearized LUT. This defined which 
DAC values (1-16384) were associated with each of the 
4096 intensity levels available for the monitor. 

After checking that the LUT was linear for a set of 
coarsely sampled contrasts throughout the contrast range, 
we went on to measure the luminance of both bright and 
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FIGURE 2. Luminance measurements of the bars of a square-wave grating between 90 and 100% contrast. (a) Dark bar; (b) 
bright bar. In (a) the DAC (digital-to-analogue) values and LUT (look-up-table) values are also shown on the abscissa. 

dark bars of the square-wave grating at 1% intervals 
between nominal 90 and 100% contrasts. We made three 
luminance measurements; at each contrast in random 
order presentation, and also noted their associated LUT 
and DAC values. For the bright bar this established 
whether there was sufficient luminance resolution in the 
steepest part of the monitor gamma. For the dark bar this 
provided an estimate of the minimum luminance of a 
nominally 100% contrast stimulus, and checked the 
linearity of the LUT in the: flattest part of the gamma. The 
results are shown in Fig. 2 which plots the mean 
luminances of the bright [Fig. 2(a)] and dark [Fig. 2(b)] 
bars as a function of their :nominal contrast. For the bright 
bar [Fig. 2(a)] LUT values and DAC values are also 
shown on the abscissa. It can be seen that the luminances 
of both bright and dark bars are nearly linear functions of 
nominal bar contrast up to about 98.5%, where the 
minimum luminance of the dark bar sets an upper limit to 
contrast. For the bright bar [Fig. l(a)] the DAC resolution 
is greater than that of the LUT resolution all the way up to 
maximum contrast. At its lowest, the DAC:LUT ratio is 
1.4 between C = 98 and 100% for the bright bar. This 
means that no two adjacent LUT values will be associated 
with the same DAC value, and there are enough DAC 
values between adjacent LUT values to continue to 
generate almost constant increments in luminance at the 
high end of the range. 

In summary, the measarements show that from 0 to 
98.5% contrast there are 2017 (less than 2048 because of 
the cut-off at 98.5%) distinct levels of contrast at virtually 
identical contrast intervals, providing a contrast resolu- 
tion of 0.05% throughout ~Ihe contrast range. This value is 
about a factor of three smaller than the smallest contrast 
increment threshold measured in the experiments de- 
scribed below. 

Even though the contrast resolution of our stimuli is 
sufficient it is possible that higher harmonic distortions 
exist in the high contrast sine-wave stimuli. To check the 
fidelity of the high contrast sine-waves, we measured the 
luminance profile of a nominally 100% contrast sine- 
wave whose spatial frequency was 0.0078 cycles per 
raster line, or 0.25 c/deg in the experiments. For this we 
used a Hagner Universal Microphotometer (Opticon) 
with its circular aperture focused onto an area approx. 4 
pixels (raster lines) in diameter, or 1/32 of the sine-wave 
cycle, by the addition of suitable lenses. The region 
outside the field of view of the aperture was occluded 
with black card to minimize the effects of surrounding 
light scatter. Measurements were made at 36 phase 
positions of the sine-wave. The results are shown as the 
solid circles in Fig. 3, with the continuous line an actual 
sine-wave fitted to the data. As the figure shows there are 
no visible distortions in the sine waveform. 

Stimuli 

We employed both sine- and square-wave stimuli. 
They were presented in a circular hard edged window on 
a background set to the same mean luminance as the 
grating, which was 37.0 c/deg m 2. Four cycles of the test 
gratings were displayed in the window. In the 0.0625 
c/deg condition only one cycle was displayed and the 
stimulus was not windowed. The stimuli were all 
presented with a linear ramp at both onset and offset of 
1/4 of the total stimulus presentation time, implying that 
they were at full contrast for 1/2 the total presentation 
time. In the standard condition total presentation time 
was 0.4 sec. We used a range of pedestal contrasts from 
0.0 to 98.5%: 0.0, 1.25, 2.5, 5.0, 10.0, 20.0, 40.0, 50.0, 
60.0, 70.0, 80.0, 90.0 and 98.5%. These are logarith- 
mically spaced up to 40% as in previous studies, but 
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FIGURE 3. Luminance profile of the 0.25 c/deg sine-wave at 
nominally 100% contrast, measured as the voltage output of a 
microphotometer. The physical spatial frequency of the silae-wave was 10 
0.0078 c/raster line, and the circular aperture of the photometer was e 4 
focused onto an area approx. 4 raster lines in diameter, or 1/32 of a 
cycle. The solid circles show the voltage measurements, while the 2 

continuous line shows a sine-wave fitted to the data. ~ 1 

linearly spaced above 40% to enable a detailed 
examination of contrast discrimination performance at 
high pedestal contrasts. We measured performance at 
spatial frequencies of 0.0625, 0.125, 0.5, 4.0 and 8.0 
c/deg. For the 0.0625, 0.125 and 0.5c/deg stimuli, 
viewing distance was 73.5 cm. The 4.0 and 8.0 c/deg 
conditions used identical stimuli as the 0.5 c/deg stimulus 
but viewed at 588 and 1176 cm, respectively. This was to 
ensure that any changes in the shapes of the contrast 
discrimination functions at these higher spatial fre- 
quencies could not be due to the attenuation character- 
istics of the monitor. The phase of the gratings was fixed 
in sine-phase at the centre of the window, except in those 
experiments that specifically studied the effects of phase. 
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FIGURE 4. Contrast discrimination functions for the 0.125 c/deg 
condition. Symbols next to 0.125c/deg label indicate whether the 
stimulus was a sine-wave or a square-wave. Note that AC is on a log 
axis whereas C is on a linear axis. The dashed rule is a continuation of 
the first contrast threshold data point. Results are shown for three 

subjects. 

prevent the combination of C and AC ever falling outside 
the range of 0-98.5%. In any one experimental session 
staircases at different pedestal contrasts were run in a 
random order. 

Procedure 
A 2IFC (two interval forced choice) procedure was 

used to measure AC. In the standard condition the interval 
between the two stimuli of  each forced-choice pair was 
1.0 sec. The subject had to decide in which interval the 
stimulus, C or C + AC, had the greatest contrast and a 
button press recorded their decision. It also initiated the 
next trial, which began after an interval of  1.0 sec. A 
standard "two-up, one-down" staircase procedure was 
used to measure the threshold AC (Levitt, 1971), which 
gives a value corresponding to 70.7% correct detections. 
When the staircase required a change in AC it was either 
incremented or decremented by a fixed ratio of  1.5. The 
first two reversals o f  the staircase were ignored and the 
session was terminated after 10 additional reversals. The 
threshold value of  AC was calculated as the geometric 
average of  AC over those 10 reversals. For pedestal 
contrasts less than 50% the procedure established the 
contrast increment threshold, whereas above 50% it 
established a decrement threshold. This was necessary to 

Subjects 
Five subjects participated in this experiment, the two 

authors FK and PW and three naive subjects, KH, SB and 
VT who were paid volunteer research assistants at McGill 
University. All had normal or corrected-to-normal visual 
acuity. Not all subjects completed every condition. 

RESULTS 

Figures 4--7 present the results for the 0.125, 0.5, 4.0 
and 8.0 c/deg conditions, respectively. Note first that the 
data are plotted on log-linear, rather than log-log, plots 
in order to show AC in detail at high pedestal contrasts. 
This has the effect of squashing the "dipper function" in 
AC seen at very low C up against the left hand side of 
each graph. Each data point is the geometric mean of 
three or four thresholds and the bars represent standard 
errors. Although data points below C=50% were 
contrast increment thresholds, whereas data points above 
C = 50% were contrast decrement thresholds, they are 
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FIGURE 5. Results for the I).5 c/deg condition for three subjects. 

given the same symbols on the assumption that for small 
AC there will be negligible differences depending on 
whether the standard is larger or smaller in contrast than 
the test. Inspection of the graphs show that the data 
appear to fall into roughly two groups, depending on 
spatial frequency. For the 0.125 and 0.5 c/deg stimuli 
(Figs 4 and 5) the contrast discrimination function has 
varying degrees of ma inverse U-shape, with AC 
diminishing at values of C above about 50%. For the 
4.0 and 8.0 c/deg stimuli (Figs 6 and 7), however, no such 
inverse U-shaped function is observed. To obtain a 
clearer picture of the extent of the U-shape in the 
functions we fitted a quadratic polynomial to the log AC 
values between C = 1.25 and 98.5%. We then took the 
second derivative of the :~tted function as a measure of its 
curvature. The results are shown in Fig. 8. The sign of the 
second derivative has been inverted so that a high 
positive value reflects a high degree of negative 
curvature, or a pronounced inverse U-shape. The overall 
trend in the data is clearly towards a reduction in the 
extent of the inverse U-shape as spatial frequency 
increases, though there iis little consistent change across 

subjects between the 0.125 and 0.5 c/deg conditions. 

The mechanisms for improved contrast discrimination at 
high contrasts 

We now consider two possible reasons for the "dip- 
down" in AC at high pedestal contrasts that occurred in 
the 0.125 and 0.5 c/deg conditions. 

(1) Cortical adaptation? One explanation for the dip- 
down is the operation of cortical long-term adaptation 
mechanisms. It is well known that prolonged inspection 
of high contrast gratings elevates detection thresholds for 
subsequently presented test gratings (Blakemore & 
Campbell, 1969) and reduces their apparent contrast 
(Blakemore, Muncey & Ridley, 1973). More recently 
Greenlee and Heitger (1988) have provided some 
evidence that adaptation to high contrast gratings 
(C > 50%) can in addition improve contrast discrimi- 
nation thresholds at high pedestal contrasts. They found 
that AC at C = 80% was reduced by a factor of about two 
after 5 min adaptation. Although this result has not been 
replicated (Ross & Speed, 1991), and although it is 
unlikely that the stimuli we employed were exposed for 
long enough in our test runs to produce such an effect, we 
nevertheless have investigated this possibility. We 
compared AC at two inter-trial intervals (ITIs) of 
1.0 sec (the standard condition) and 6.0 sec. We reasoned 
that 6.0 sec ITI would prevent any significant build-up of 
adaptation during a session and so would remove the dip- 
down at high C if the long-term adaptation hypothesis 
was true. AC was measured at C = 5, 50 and 95% for both 
sine-wave and square-wave stimuli and the results are 
shown in Fig. 9. In three out of four cases the dip-down in 
AC is preserved in the 6.0 sec condition, though it appears 
to be reduced in overall magnitude in all conditions. The 
reduction in the overall magnitude of the dip-down is 
principally caused by a reduction in AC for the 50% 
condition at the 6.0 sec ITI, and we are unable to offer 
any explanation for this effect. We conclude, however, 
that if long-term adaptation is having an effect, it is 
having a very small one and that it is not the principal 
cause of the dip-down in AC at high pedestal contrasts 
that we have observed. 

(2) Local retinal light adaptation? A second possible 
cause of the dip-down in AC at high C is local light 
adaptation within the stimuli. (We use the generic term 
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light adaptation for adaptation to a change in luminance, 
although it is probably strictly speaking dark adaptation, 
adaptation to a decrease in luminance, that is more 
important here.) This could produce the dip-down either 
by compressing the intensity-response function prior to 
contrast processing, or if the contrast processing 
mechanisms themselves locally adapted to the dark bars. 
We discuss these two possibilities in more detail later on. 
Adaptation is very fast at photopic levels. When 
luminance is reduced, the increment threshold for a brief 
probe flash falls rapidly for the first 150 msec or so, 
levelling out between 150 and 250 msec (e.g. Crawford, 
1947). If the dip-down is due to local adaptation we 
would therefore expect it to be reduced at stimulus 
exposures significantly less than 150 msec. Figure 10 
shows results for exposure durations of 0.125, 0.35 and 
1.0 sec. Note that these durations should be halved to 
obtain the time for which the stimulus was on at full 
contrast because of the linear ramp at onset and offset. 
We see that the dip-down occurs at both 0.35 and 1.0 sec 
but not at 0.125 sec, except for a slight effect in VT's 
sine-wave data. These results are therefore largely 
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FIGURE 9. Effect of  inter-stimulus interval (ITI) on AC at C = 5, 50 
and 95%. Solid rules = ITI of  1.0 sec; dashed rules = ITI of  6.0 sec. 

consistent with the known dynamics of early light 
adaptation and thus support the hypothesis that the dip- 
down is caused by such adaptation. 

Effect of phase 
In all the experiments described so far the stimuli were 

presented in sine phase, that is with a dark and a bright 
bar on either side of the center. Fixation was free and 
some subjects said that they fixated on the dark bar in 
order to maximize their performance. Is foveal fixation of 
the dark bar essential to produce the dip-down? To 
answer this we measured AC for 0.5 c/deg gratings in 
both fixed- and random-phase presentations, requiring 
subjects to maintain fixation on a tiny dot in the middle of 
the screen. The results in Fig. 11 show no consistent 
differences between fixed and random phase conditions. 
Therefore, at least for 0.5 c/deg gratings, the dip-down is 
not restricted to the particular phase conditions used in 
the other experiments, and fixation directly on the dark 
bar is not necessary. To test the generality of this 
conclusion at frequencies low enough for a half cycle to 
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occupy a significant part of central vision, we went on to 
measure AC for a 0.0625 c/deg stimulus, for which one 
cycle filled the entire screen. The stimuli were presented 
in fixed phase, centred on either the dark or the bright bar. 
The results are shown in Fig. 12. For both subjects a large 
dip-down occurred for all dark-bar-centred stimuli (solid 
symbols), as expected. For the bright-bar-centred stimuli 
(open symbols) on the other hand, there was no dip-down 
in three out of four conditions and only a slight one in the 
fourth (KH, square-wave,). Therefore, the dark bar does 
seem to be salient for contrast discrimination in this 
rather extreme case where each bar is 8 deg wide. 

This is somewhat ptr+,zling, particularly for square- 
wave stimuli• Since the edge is in the same place 
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irrespective of whether the dark or bright bar is central, it 
cannot in this case be the mechanisms acting at the edge 
that are critical for accurate contrast discrimination. It 
suggests instead that the critical feature here is the 
accurate registration of the luminance of the dark bar. 
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TABLE 1 

Power law in W Power law in C 

S c/deg Stimuli k n R2% R2% n (C < 50%) N 

FK 0.125 Sine 0.19 0.96 98.1 66.9 0.63 51 
FK 0.125 Square 0.17 1.02 98.4 81.8 0.68 54 
KH 0.125 Sine 0.16 0.93 97.6 62.3 0.55 58 
KH 0.125 Square 0.15 1.01 97.8 86.0 0.54 64 
PW 0.125 Sine 0.21 1.07 99.1 86.0 0.82 41 
PW 0.125 Square 0.16 1.00 97.1 74.4 0.58 64 

FK 0.5 Sine 0.11 1.01 98.6 79.7 0.66 86 
FK 0.5 Square 0.15 1.00 98.9 72.1 0.73 68 
KH 0.5 Sine 0.15 1.05 98.8 83.7 0.83 61 
KI-I 0.5 Square 0.17 1.00 97.6 80.7 0.75 57 
PW 0.5 Sine 0.14 1.03 98.6 79.8 0.75 66 
PW 0.5 Square 0.13 1.01 97.6 81.7 0.57 76 

FK 4.0 Sine 0.18 1.11 98.1 95.4 0.72 49 
FK 4.0 Square 0.20 1.13 98.5 96.4 0.65 46 
KH 4.0 Sine 0.20 1.05 97.7 91.1 0.64 43 
KH 4.0 Square 0.18 1.01 97.0 90.1 0.47 49 

FK 8.0 Sine 0.17 1.21 99.2 91.1 0.83 40 
FK 8.0 Square 0.23 1.04 97.9 94.5 0.57 36 
PW 8.0 Sine 0.22 1.15 99.0 92.2 0.58 28 
PW 8.0 Square 0.19 1.18 99.0 97.5 0.67 37 

All parameters are calculated over the full range of suprathreshold pedestal contrasts up to 98.5%, except where specified as C < 50%. S, subjects; 
K, constant; n, exponent; R 2, proportion of the total variance accounted for by the linear fit; N, number of discriminable steps. 

This supports the conclusion of the previous section, that 
local adaptation is important, but it also leaves a puzzle as 
to why local luminance is more accurately perceived in 
the central than in peripheral retina. 

DISCUSSION 

The principle finding of this study is that the traditional 
description of contrast discrimination in terms of a power 
law in C is not applicable when AC is measured 
throughout the contrast range, if the stimuli are of low 
to medium spatial frequency and presented for about 
200 msec or longer. Whereas a power law predicts that 
AC should monotonically increase with C, we find that it 
reaches a maximum at about 50% contrast and then 
decreases to a greater or lesser extent as C approaches its 
upper limit. That is, contrast discrimination improves as 
contrast increases in the high contrast range. We suggest 
that this improvement is due to the influence of local light 
adaptation on contrast processing. The main evidence for 
this was that the dip-down in AC at high C disappeared at 
exposure durations of less than about 150 msec. One 
other possible cause of the dip-down was considered but 
rejected. We found that increasing the inter-trial interval 
from 1.0 to 6.0 sec neither worsened contrast discrimina- 
tion at 90% pedestal contrast, nor eliminated the dip- 
down, thus making it unlikely that the effects were due to 
long-term cortical adaptation. 

Comparison with previous studies 
The only study known to us to have shown a dip-down 

in AC in the suprathreshold range of contrasts using 

periodic stimuli is by Kohayakawa (1972), who measured 
AC up to C = 35% with 2.0 c/deg sine-wave gratings. He 
found that AC decreased after about C = 25%. In our data, 
however, the decrease does not occur until at least 
C = 5 0 % .  Given the numerous studies which have 
measured AC up to C = 50%, none of which have found 
a dip-down, Kohayakawa's result must be seen as 
anomalous. Two features of his study differed from 
current practice. The stimuli were presented in an optical 
system rather than on a CRT, and the gratings to be 
discriminated were spatially abutting. It would be 
interesting to try to replicate his measurements using a 
computer monitor, to see if contiguous gratings produced 
a dip-down at lower contrasts than we found. The only 
study we are aware of which measured AC in the high 
contrast range is that by Greenlee and Heitger (1987) who 
went up to 80% pedestal contrast. Their measurements 
without prior adaptation, the condition comparable to 
ours, show no hint of a dip-down. One possible reason is 
their choice of spatial frequency: 2.0 c/deg. This falls in 
the gap between our 0.5 and 4.0 c/deg measurements, so 
it is possible that we also would have found no dip-down 
at 2.0 c/deg, as was the case at 4.0 and 8.0 c/deg. It is 
worth noting, however, that their plots of AC against C 
show a more or less linear relationship between AC and C 
throughout the contrast range. This is at odds with all 
previous reports, which have shown AC to be a power 
function of C with an exponent substantially less than 1.0, 
including Legge's  (1981) study which found an exponent 
of 0.6 for 2.0 c/deg gratings. Such a power law would be a 
negatively accelerated curve on the  linear plots used by 
Greenlee and Heitger, whereas their data show, if 
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anything, a slight positive acceleration. There may 
therefore have been other features of their procedure 
which made their results differ both from most previous 
studies and from ours. 

To compare our results with the often quoted study by 
Legge (1981), Table 1 gives the values of the exponent n 
for the best fitting power law in C for our data points over 
the restricted contrast ra~Lge from 1.25 to 50.0%, which 
was the maximum used by Legge. He found average 
exponents of 0.6 at 2 c/deg and 0.7 at 8.0 c/deg, which are 
similar to our average exponents of 0.63, 0.72, 0.62 and 
0.66 for the 0.125, 0.5, 4.0 and 8.0c/deg conditions, 
respectively. We now consider how our results with 
periodic stimuli compared to those of whittle (1986). 

The metric W 

In the Introduction we described the results of 
Whittle's (1986) study 'which measured contrast dis- 
crimination thresholds for both incremental and decre- 
mental test patches. Although the results for increments 
and decrements were very different at high contrasts 
when plotted in terms of luminance differences (see 
Introduction), they came together when plotted in terms 
of the contrast expression W= (Lmax - L m i n ) / Z m i n ,  and 

were well described by the power law AW= kW ~. The 
exponent n was close to unity, implying a Weber's Law 
in W. This is shown diagrammatically in Fig. l(f). The 
same relation describes our results with gratings. Figure 
13 shows our data for 0.5 c/deg stimuli with contrast 
expressed as W rather than C. Each log-log plot shows 
the best linear fit to the rising portion of the curve. As can 
be seen, these linear fits are very good. Table 1 gives the 
best fitting values of k and n. n is always close to unity for 
the spatial frequencies 0.125 and 0.5 c/deg, showing that 
our results with periodic stimuli are very similar to those 
for Whittle's patch stimuli. The superiority of the power 
law in W over the traditional power law in C as a 
description of contrast discrimination over the full 
contrast range, is also forcefully shown by the good- 
ness-of-fit measures in Table 1. R 2, the proportion of the 
total variance accounted for by the linear fit, is obviously 
much larger for the former, particularly for the 0.125 and 
0.5 c/deg data. A power law in W also describes the 
higher frequency data, at 4.0 and 8.0c/deg, but the 
exponent is then somewhat more than 1.0. 

The fact that a Weber's Law in W gives such a good 
description of data for increments, decrements and sine 
and square wave gratings, points to a common mechan- 
ism for contrast discrimination of all these stimuli. 
Although we have only measured contrast discrimination 
at one mean luminance, we assume we would obtain 
similar findings at other mean luminances on the basis of 
previous studies. Whittle (1986)found that a power law 
in W fitted his increment and decrement data over a range 
of mean luminances from 1.35 to 4.35 log td when 
normalized with respect to detection threshold. Jamar and 
Koenderink (1984) found that the detection of contrast 
modulation in sine-wave gratings was independent of 
mean luminance as measured in the range 0.02-90 td, 
even though simple detection thresholds showed the 
classic de Vries-Rose square-root dependence on mean 
luminance. 

The functional significance of W, Lmi, and C 

The denominator of contrast expressions like C and W 
can be interpreted as a divisive gain parameter set by light 
adaptation. Therefore, the first hypothesis suggested by 
the power law in W is that the contrast-processing 
mechanisms locally adapt to Zmin, at least at low spatial 
and temporal frequencies, so that 1/Zmi n is the gain factor 
for the mechanisms that detect AL. C uses Lmean in the 
denominator. At low contrasts the ratio Lmean:Lmin  is 
close to unity but at high contrasts it becomes large. 
Hence the positive acceleration of Wwith respect to C. In 
functional terms, ifLmi, is the right gain parameter, Lmean 
overestimates it at high contrasts so C underestimates the 
visually effective contrast. Hence the dip-down in AC at 
high contrasts. 

The unsatisfactory nature of C in representing contrast 
discrimination could be seen clearly in Whittle (1986). 
He found a marked dip-down in discrimination thresh- 
olds for decrements, but not for increments, when the 
data were plotted as A2L vs AL. But this important 
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difference was obscured when the data were plotted in 
terms of AC vs C (see Fig. 1). Both increments and 
decrements then showed a dip-down because the C 
metric compressed the high contrasts for both of them. 
Note, incidentally, that this also implies that a dip-down 
in C, as in the present data, is not a good basis from which 
to deduce the underlying visual processes. One should 
not infer, for example, that Lrnin must physically decrease 
over the contrast range used: Whittle's data showed just 
as big a dip-down in C for increments, for which Lmin was 
constant. 

what might be the physiological correlate of a power 
law in W?. While it is not our intention to consider in 
detail how our data might be explained by current models 
of light adaptation, some elementary and familiar notions 
about light adaptation nevertheless suffice. The central 
idea is that light adaptation is rapid and highly localized. 
There is good psychophysical evidence that at photopic 
levels adaptation may be localized to within the diameter 
of a cone (Burr, Ross & Morrone, 1985; Macleod, 
Williams & Makous, 1992), and neurophysiological 
evidence from the cat suggests that it is at least localized 
to within the receptive field center of ganglion cells 
(Shapley & Enroth-Cugell, 1984). This high degree of 
localization explains how Lmi n could be the gain 
parameter of a retinal mechanism which processes 
contrast, such as a ganglion cell, even when, as in the 
sine-wave condition, Lmi n is restricted to a thin strip. An 
"OFF" center ganglion cell, whose response to contrast 
was divided by the mean luminance sampled over its 
receptive field centre, would give its biggest response 
when its receptive field was centered on Lmin, the darkest 
part of the stimulus. If we assume that the responses of 
such cells are also compressively transformed (either 
directly, or more likely at a later cortical stage where the 
outputs of "ON" and "OFF" retinal cells are combined 
for contrast processing) then the result is the necessary 
contrast-response function for producing a power law in 
W for contrast discrimination (see Appendix for details). 

Although a number of previous models have combined 
light adaptation and contrast processing (e.g. Hayhoe, 
Benimoff & Hood, 1987; Bowen & Wilson, 1994), none 
have used Lmin as the gain parameter. For example, Burr 
et al. (1985), in commenting on psychophysical results 
that implied highly localized light adaptation, state on p. 
726 "For single objects contrast is usually (Lo - Lb)/Lb, 
where Lo is the luminance of the object and Lb the 
luminance of the background... If gain control is as local 
as the present experiments suggest, mean or background 
luminance is not the most appropriate normalization 
f ac to r . . .  Our results suggest that a more appropriate 
definition..,  may be (Lo - Lb)/Lo so that the luminance 
which sets the local gain, Lo, is also the denominator for 
contrast". The results here, however, suggest that if one 
adopts a model which combines contrast processing with 
localized divisive gain control, the denominator should 
be Lmi n rather than Lo. Lo will in fact be the divisor 
everywhere, but discrimination thresholds will depend on 
the regions where the signals from the two gratings differ 

most, and we suggest that those regions are where Lo is 
minimum. 

Alternatives to W 

Kingdom and Moulden (1991) re-analysed Whittle's 
(1986) increment and decrement contrast discrimination 
data using the metric G = ln(Lmax/Lrnin), and found that a 
power law in G, namely AG = kG n, with the exponent 
n = 0.69, linearized the data on a log-log plot. At the time 
Kingdom and Moulden argued that W, which Whittle had 
employed, was not a physiologically realistic measure of 
contrast because the gain parameter that it suggests, Lmin, 

was the background luminance for increments and the 
test patch luminance for decrements. Surely, they argued, 
it need not be different for the two classes of stimuli. In 
the light of our suggestions above on how W could be 
realized physiologically, their argument now appears ill 
conceived. However, G remains an attractively simple 
contrast expression, and it is of some interest that a 
power-law in G also linearizes the data here well, though 
not as well as W. The mean R 2 value for the 0.5 c/deg data 
is 95%, compared to W which gives a better fit of 98%. 
The average exponent for the power law in G is 0.74. 
Interestingly, Legge and Kersten (1983) have also argued 
for the log transform, as part of the explanation for why 
Michelson C brought together their incremental and 
decremental bar contrast discrimination functions. Legge 
and Kersten showed that C was approximately equal to 
log(Lo/Lb) up to about C = 0.7. C worked, they argued, 
because it reflected the logarithmic response of retinal 
neurones to intensity. The irony is that had they measured 
bar contrast discrimination up to maximum contrast, as 
Whittle (1986) did, they would almost certainly have 
found that the logarithmic transform gave a better fit to 
their data than C, precisely because log(Lo/Lb) works 
better than C in the high contrast range where the two 
metrics differ. 

Another function that is used almost as often as the 
logarithm to describe an early non-linearity is the Naka- 
Rushton equation R(/) = RrnaxL/(L + s) where Rmax is the 
maximum possible response, L luminance and s the semi- 
saturation constant (Naka & Rushton, 1966). To derive an 
expression for contrast, we apply the Naka-Rushton 
equation to Lmax and Lmin separately (putting g m a  x = 1) 
and then define Z as the difference between the two. This 
gives Z = Lmax/(Lma x + s)  - Lmin/ (Lmi  n + s). Z s h a r e s  
some properties with W and G [in fact R(/) is 
approximately proportional to the logarithm for suitable 
choice of s, so that then Z is approximately proportional 
to G]. The linear fits for a power law in Z are quite 
excellent. The mean R 2 value for the 0.5 c/deg data with s 
set to 0.17 of Lmean is 98.4%, which is fractionally 
superior to the fit obtained with W. The average exponent 
of the power law in Z for the 0.5 c/deg data is 0.76. 

W, G and Z all linearize the data because they are 
positively accelerated functions of C, as illustrated in Fig. 
14. The more positively accelerated, the higher the 
exponent of the corresponding power law. Conversely, C 
is a negatively accelerated function of W, G and Z: 
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relative to them it expands the low end of the contrast 
range and compresses the high end. If a Weber's law in W 
describes contrast discrinaination, the dip-down in C 
follows mathematically from the nature of the C metric. 
Note that it is not the restriction of C to the interval 0-1 
that is the problem. Z is similarly restricted, and any 
metric can be constrained to this interval by normalizing 
by some maximum value, as has been done for W and G 
in Fig. 14. That simply scales the axes without affecting 
characteristics like the inverse U-shape of the discrimi- 
nation functions. 

Physiologically, power-laws in G and Z suggest a 
more-or-less pointwise, compressive non-linear trans- 
form of the luminance profile before contrast is 
processed, as assumed in a recent study on masking by 
Bowen and Wilson (1994). This compressive non- 
linearity corresponds to the logarithmic (in G) or Naka- 
Rushton (in Z) transform, and has the effect of enhancing 
the contrast of the dark: relative to the bright bars, 
especially at high contrasts. This scheme differs from the 
one suggested above for W, in that here there is 
compression before contrast is computed, whereas the 
model for W proposed a single stage of light adaptation 
plus contrast processing. ][n both cases the output of the 
contrast processing stage would be subject to a further 
compressive non-linearity. 

Sine-wave  vs square-wave  st imuli  

One prominent feature of our data is that in not one 
single measure of contrast discrimination have we found 
any significant differences between sine- and square- 
wave stimuli. This is perhaps not surprising at high 
spatial frequencies since the higher harmonic compo- 
nents in the square-wave will then be so attenuated as to 
contribute little in terrrts of their contrast energy. 
However, this is not the case at low frequencies. The 
simplest explanation for the lack of difference between 
sine- and square-wave stirauli is that contrast discrimina- 

tion performance is indeed dependent on only two 
stimulus parameters: Lmax and Lmi n. This in turn is 
consistent with the view that the multiplicative light 
adaptation processes which we have argued are respon- 
sible for the dip-down in AC, are indeed set very locally, 
since Lmin, spatially half a cycle in a square-wave, is 
localized to a point in a sine-wave. 

Why is there no dip-down in AC at high C f o r  the 4.0 and 
8.0 c/deg conditions ? 

We find no improvement in AC at high C for the 4.0 
and 8.0 c/deg conditions. A trivial consequence of this is 
that a power law in C fits these data quite adequately, as 
shown by the R 2 values in Table 1. Two likely reasons for 
the lack of a dip-down in AC in the 4.0 and 8.0 c/deg 
conditions are: (a) attenuation of contrast by the optics of 
the eye; and (b) adaptational pooling. The effect of 
attenuation will be to shift the curve relating AC to C 
along the C-axis and if large enough will prevent the dip- 
down in AC. To estimate the effect on our 4.0 and 8.0 
c/deg gratings we used the measurements of contrast 
attenuation provided by Campbell and Gubisch (1966) 
for a pupil size of 3.8 mm, which was approximately the 
measured pupil size of FK during the experiments. The 
mean value of attenuation, defined here as the proportion 
of contrast remaining, across the three subjects in Fig. 7 
of Campbell and Gubisch was 74% at 4.0 c/deg and 51% 
at 8.0. This degree of attenuation is certainly enough to 
eliminate the dip-down in AC at 8.0 c/deg and substan- 
tially reduce it at 4.0. 

A second possibility under the power law in W 
description is that Lmi n is not the divisive gain factor of 
the mechanisms that encode contrast at 4.0 and 8.0 c/deg, 
as we argued it was at lower frequencies. In the limit it is 
of course implausible that the factor is exactly Lmin, since 
W would become infinity at maximum contrast. A more 
plausible parameter would be Lmi n + KC, where K is a 
constant combining 'dark noise' in the visual system 
(Barlow, 1957) and light scatter in the eye (Whittle, 
1986). However, if the area over which luminance were 
pooled in setting the gain were not localized to Lmi n 
(which in the sine-wave condition is an infinitesimally 
narrow line), but was instead of finite width, that finite 
width would become an increasing proportion of the duty 
cycle of the stimulus as spatial frequency increased. Drift 
eye movements occurring during fixation could help to 
spread the region over which the luminance that sets the 
adaptational level was pooled. In the limit, if the spatial 
frequency were enough for the pool to be as large as a 
complete cycle of the stimulus the gain factor would 
become Lmean. Unfortunately we have no independent 
means of assessing the value that K might take, so we 
conclude that while optical attenuation probably accounts 
for most of the lack of a dip-down in AC at high C, 
adaptational pooling may be also be partly responsible. 
The appendix shows how both the effects of optical 
attenuation and adaptational pooling can be included in a 
general formulation for predicting the function describ- 
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ing AC as a function of  C based on a power  law for W 
model.  

Number of discriminable steps in contrast 

Having measured contrast discrimination thresholds 
throughout the range of pedestal contrasts we are in a 
position to answer the question: how many discriminable 
steps in contrast are there? For an increment, the upper 
physical limit for luminance is unspecifiable and, there- 
fore, so is the number of discriminable steps in contrast. 
For decrements and periodic stimuli, however, the 
number of discriminable steps, or N, in contrast is finite 
and hence calculable. To estimate N we employed a 
function which described the data with a very high degree 
of accuracy: 

AC = k (C/(1 + K))  ". (1 - C/(1 + K)) 2 - ~  (1) 

in which we allow k, n and K to be free parameters. This 
is similar in form to equation (A9) derived in the 
Appendix for including the effects of optical attenuation 
and adaptational pooling, but has one less free parameter. 
We stress that equation (1) is not meant to be a model of 
performance, but merely a convenient way of fitting the 
data with a curve which we can then use to obtain N. 
Using equation (1) we found N by a process of iteration 
between the value of C = contrast threshold and C = 1. 
The results, in Table 1, show that N varies significantly 
between conditions and subjects, but the principle source 
of variation appears, as one would expect, to be spatial 
frequency. The mean values of N averaged across the 
sine-wave and square-wave data, and across subjects is 
55, 69, 47 and 35 for the 0.125, 0.5, 4.0 and 8.0 c/deg 
conditions, respectively. These values, are consistent with 
an inverse U-shaped function of N with respect to spatial 
frequency under the conditions used in this study, though 
more data are dearly required to find the precise shape of 
the function. The estimates of N at 0.125 c/deg are lower 
than those at 0.5 c/deg principally because the values of k 
are larger in the 0.125 c/deg condition, k might provide an 
estimate of the amount of noise in the system and if so 
this may be consistent with there being a lower sampling 
density of detectors per unit cycle of the stimulus in the 
0.125 c/deg condition compared to the 0.5 c/deg condi- 
tion. On the other hand, the lower values of N at 4.0 and 
8.0 c/deg reflects the increased value of K for these 
conditions. This is consistent with the role of either the 
optics and/or adaptational pooling described in the 
previous sections. Finally it is worth reiterating the fact 
that a simple power law in C fit to the data points for 
C < 50% contrast (see Table 1) predicts lower values of N 
than estimated here. 
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APPENDIX 

Whittle (1986) found that if contrast is measured as W = (Lmax - 
Lmin)/Lmin, rather than C=[Lmax- -Lmin ) / (Lmax+Lmin )  then the 
contrast discrimination function for both incremental and decremental 
test patches followed the rule 

AW = kW" (A1) 

where n was found to be approximately unity. Following Fechner 's  
integration of Weher ' s  law, we assume that contrast discrimination 
reflects the operation of a transducer function, R(W), in which a fixed 
value of fiR(W) represents the criterion level of discrimination. Thus 
since AW/W" is a constant 

fiR(w) = AW/W". 

If AW is small this can be approximated in the limit by 

dR(W) = 1/W" dW. (A2) 

Integrating both sides of equation (A2) gives 

R(W) = 1/(1 -- n)W 0 - ") n! = 1 (A3) 

or 

R(W) = lnW n = 1. 

It is easily shown that W = 2C/(1 - C) and therefore the transducer 
function R(W) in equation (A3) can be reformulated in terms of C as 

R(C) = 1/(1 - n) [2C/(1 - C)]O - -). (A4) 

To formulate the expected relationship between AC and C, one simply 
performs the reverse of Fechner 's  integration by first taking the 
derivative of equation (A4) with respect to C. Thus 

dR(C) = 2 ' - " C - ' ( 1  - C ) ' - 2  (AS) 

dC. 

Taking the reciprocal of the result and adding back the constant k then 
gives 

AC =k 2 " - t  C" (1 - C) 2-"  n ! = l  (A6) 

or AC -- k C (1 - C) n = 1. (A7) 

Equations (A6) and (A7), like their equivalent in terms of AW, equation 
(AI),  implausibly predict AC to be zero when C = 1. Dark noise 
(Barlow, 1957), light scatter (Whittle, 1986) and adaptational pooling 
will prevent Lmi n reaching zero (and hence C = 1). If  K reflects the 
combined effect of these three factors, we can replace Lmi n with 
Lmi n + KC in the denominator of R(C), which then equals [1/(1 -- n)] 
2C/(1 - C + CK). Using the above method it is easily shown that with 
the addition of K 

AC = (k/2) (2C)" (1 -- C + KC) 2-" .  (A8) 

Finally, if we wish to include the effects of optical attenuation by an 
amount a, where a = retinal contrast/physical contrast, equation (A8) 
now becomes 

AC = (k/2) (2aC)" (1 - aC + aKC) 2-n (A9) 

or more simply 

AC = k' C" (1 - aC + aKC) 2-n. (A10) 


