23 research outputs found
4-Phenylbutyric acid treatment rescues trafficking and processing of a mutant surfactant protein C
Mutations in the SFTPC gene, encoding surfactant proteinâC (SP-C), are associated with interstitial lung disease (ILD). Knowledge of the intracellular fate of mutant SP-C is essential in the design of therapies to correct trafficking/processing of the proprotein, and to prevent the formation of cytotoxic aggregates. We assessed the potential of a chemical chaperone to correct the trafficking and processing of three disease-associated mutant SP-C proteins. HEK293 cells were stably transfected with wild-type (SP-C(WT)) or mutant (SP-C(L188Q), SP-C(Îexon4), or SP-C(I73T)) SP-C, and cell lines with a similar expression of SP-C mRNA were identified. The effects of the chemical chaperone 4-phenylbutyric acid (PBA) and lysosomotropic drugs on intracellular trafficking to the endolysosomal pathway and the subsequent conversion of SP-C proprotein to mature peptide were assessed. Despite comparable SP-C mRNA expression, proprotein concentrations varied greatly: SP-C(I73T) was more abundant than SP-C(WT) and was localized to the cell surface, whereas SP-C(Îexon4) was barely detectable. In contrast, SP-C(L188Q) and SP-C(WT) proprotein concentrations were comparable, and a small amount of SP-C(L188Q) was localized to the endolysosomal pathway. PBA treatment restored the trafficking and processing of SP-C(L188Q) to SP-C(WT) concentrations, but did not correct the mistrafficking of SP-C(I73T) or rescue SP-C(Îexon4). PBA treatment also promoted the aggregation of SP-C proproteins, including SP-C(L188Q). This study provides proof of the principle that a chemical chaperone can correct the mistrafficking and processing of a disease-associated mutant SP-C proprotein
Lack of PTEN sequesters CHK1 and initiates genetic instability
Ptenâ/â cells display a partially defective checkpoint in response to ionizing radiation (IR). The checkpoint defect was traced to the ability of AKT to phosphorylate CHK1 at serine 280, since a nonphosphorylated mutant of CHK1 (S280A) complemented the checkpoint defect and restored CDC25A degradation. CHK1 phosphorylation at serine 280 led to cova- lent binding of 1 to 2 molecules of ubiquitin and cytoplasmic CHK1 localization. Primary breast carcinomas lacking PTEN expression and having elevated AKT phosphorylation had increased cytoplasmic CHK1 and displayed aneuploidy (p < 0.005). We conclude that loss of PTEN and subsequent activation of AKT impair CHK1 through phosphorylation, ubiquitination, and reduced nuclear localization to promote genomic instability in tumor cells
A dual-fMRI investigation of the iterated Ultimatum Game reveals that reciprocal behaviour is associated with neural alignment
Dyadic interactions often involve a dynamic process of mutual reciprocity; to steer a series of exchanges towards a desired outcome, both interactants must adapt their own behaviour according to that of their interaction partner. Understanding the brain processes behind such bidirectional reciprocity is therefore central to social neuroscience, but this requires measurement of both individualsâ brains during realworld exchanges. We achieved this by performing functional magnetic resonance imaging (fMRI) on pairs of male individuals simultaneously while they interacted in a modifed iterated Ultimatum Game (iUG). In this modifcation, both players could express their intent and maximise their own monetary gain by reciprocating their partnerâs behaviour â they could promote generosity through cooperation and/or discourage unfair play with retaliation. By developing a novel model of reciprocity adapted from behavioural economics, we then show that each playerâs choices can be predicted accurately by estimating expected utility (EU) not only in terms of immediate payof, but also as a reaction to their opponentâs prior behaviour. Finally, for the frst time we reveal that brain signals implicated in social decision making are modulated by these estimates of EU, and become correlated more strongly between interacting players who reciprocate one another
Neural computations underpinning the strategic management of influence in advice giving
Research on social influence has focused mainly on the target of influence (e.g., consumer and voter); thus, the cognitive and neurobiological underpinnings of the source of the influence (e.g., politicians and salesmen) remain unknown. Here, in a three-sided advice-giving game, two advisers competed to influence a client by modulating their own confidence in their advice about which lottery the client should choose. We report that advisersâ strategy depends on their level of influence on the client and their merit relative to one another. Moreover, blood-oxygenation-level-dependent (BOLD) signal in the temporo-parietal junction is modulated by adviserâs current level of influence on the client, and relative merit prediction error affects activity in medial-prefrontal cortex. Both types of social information modulate ventral striatum response. By demonstrating what happens in our mind and brain when we try to influence others, these results begin to explain the biological mechanisms that shape inter-individual differences in social conduct
SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion
Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era