2,639 research outputs found

    Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015

    Get PDF
    Region-wide averaging of Himalayan glacier mass change has masked any catchment or glacier-scale variability in glacier recession; thus the role of a number of glaciological processes in glacier wastage remains poorly understood. In this study, we quantify mass loss rates over the period 2000–2015 for 32 glaciers across the Everest region and assess how future ice loss is likely to differ depending on glacier hypsometry. The mean mass balance of all 32 glaciers in our sample was −0.52 ± 0.22 m water equivalent (w.e.) a−1. The mean mass balance of nine lacustrine-terminating glaciers (−0.70 ± 0.26 m w.e. a−1) was 32 % more negative than land-terminating, debris-covered glaciers (−0.53 ± 0.21 m w.e. a−1). The mass balance of lacustrine-terminating glaciers is highly variable (−0.45 ± 0.13 to −0.91 ± 0.22 m w.e. a−1), perhaps reflecting glacial lakes at different stages of development. To assess the importance of hypsometry on glacier response to future temperature increases, we calculated current (Dudh Koshi – 0.41, Tama Koshi – 0.43, Pumqu – 0.37) and prospective future glacier accumulation area Ratios (AARs). IPCC AR5 RCP 4.5 warming (0.9–2.3 °C by 2100) could reduce AARs to 0.29 or 0.08 in the Tama Koshi catchment, 0.27 or 0.17 in the Dudh Koshi catchment and 0.29 or 0.18 in the Pumqu catchment. Our results suggest that glacial lake expansion across the Himalayas could expedite ice mass loss and the prediction of future contributions of glacial meltwater to river flow will be complicated by spatially variable glacier responses to climate change

    Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca(2+) in Neurons and Astroglia

    Get PDF
    Maintaining low intracellular calcium is essential to the functioning of brain cells, yet the phenomenology and mechanisms involved remain an enigma. We have advanced a two-photon excitation time-resolved imaging technique, which exploits high sensitivity of the OGB-1 fluorescence lifetime to nanomolar Ca(2+) concentration ([Ca(2+)]) and enables a high data acquisition rate in situ. The [Ca(2+)] readout is not affected by dye concentration, light scattering, photobleaching, micro-viscosity, temperature, or the main known concomitants of cellular activity. In quiescent tissue, standard whole-cell configuration has little effect on resting [Ca(2+)] inside neuronal dendrites or inside astroglia dye-filled via gap junctions. Mapping basal [Ca(2+)] in neurons and astrocytes with submicron resolution unveils heterogeneous concentration landscapes that depend on age and preceding activity. The rich information content represented by such landscapes in acute slices and in vivo promises to unveil the hitherto unexplored, potentially fundamental aspects of brain cell physiology. VIDEO ABSTRACT

    Exploring shear alignment of concentrated wormlike micelles using rheology coupled with small-angle neutron scattering

    Full text link
    Wormlike micelles (WLMs) are vital components of many consumer products and industrial fluids, adding a shear-dependent viscous texture through their entanglement in solutions. It is now well accepted from experiments such as coupling rheology and scattering that, similar to many polymer solutions and dispersions of highly anisotropic particles, WLM behavior during shear arises from the alignment of the "worms"with the shear field, resulting in ordering that is rapidly lost in the cessation of shear. Most studies of such systems have been limited to dilute systems that are far below concentrations used industrially and commercially, due to the complexity of analyzing shear-induced many-body effects in high volume fraction dispersions. Here, we explore the shear alignment of concentrated WLM solutions comprising sodium laureth sulfate and cocamidopropyl betaine in 0.38 M aqueous sodium chloride. By analyzing only scattering data at high values of the scattering vector (i.e., correlations at short length scales that are dominant in such concentrated systems), we explore whether useful information can be obtained by naïvely approximating the WLMs as an ensemble of unconnected short rods representing sections of the worms. By taking this reductionist approach to analyzing the obtained two-dimensional scattering patterns from these systems under shear, we find that in this regime, such concentrated worms can be approximated as cylinders that become more aligned with the direction of shear as volume fraction and shear rate increase

    Scattering of Giant Holes

    Full text link
    We study scalar excitations of high spin operators in N=4 super Yang-Mills theory, which are dual to solitons propagating on a long folded string in AdS_3 x S^1. In the spin chain description of the gauge theory, these are associated to holes in the magnon distribution in the sl(2,R) sector. We compute the all-loop hole S-matrix from the asymptotic Bethe ansatz, and expand in leading orders at weak and strong coupling. The worldsheet S-matrix of solitonic excitations on the GKP string is calculated using semiclassical quantization. We find an exact agreement between the gauge theory and string theory results.Comment: 13 pages. v2: minor corrections, references adde

    On some discrete boundary value problems in canonical domains

    Get PDF
    We study some discrete boundary value problems for discrete elliptic pseudo-differential equations in a half-space. These statements are related with a special periodic factorization of an elliptic symbol and a number of boundary conditions depends on an index of periodic factorizatio

    Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Hypofractionated, stereotactic body radiotherapy (SBRT) is an emerging treatment approach for prostate cancer. We present the outcomes for low-risk prostate cancer patients with a median follow-up of 5 years after SBRT.</p> <p>Method and Materials</p> <p>Between Dec. 2003 and Dec. 2005, a pooled cohort of 41 consecutive patients from Stanford, CA and Naples, FL received SBRT with CyberKnife for clinically localized, low-risk prostate cancer. Prescribed dose was 35-36.25 Gy in five fractions. No patient received hormone therapy. Kaplan-Meier biochemical progression-free survival (defined using the Phoenix method) and RTOG toxicity outcomes were assessed.</p> <p>Results</p> <p>At a median follow-up of 5 years, the biochemical progression-free survival was 93% (95% CI = 84.7% to 100%). Acute side effects resolved within 1-3 months of treatment completion. There were no grade 4 toxicities. No late grade 3 rectal toxicity occurred, and only one late grade 3 genitourinary toxicity occurred following repeated urologic instrumentation.</p> <p>Conclusion</p> <p>Five-year results of SBRT for localized prostate cancer demonstrate the efficacy and safety of shorter courses of high dose per fraction radiation delivered with SBRT technique. Ongoing clinical trials are underway to further explore this treatment approach.</p

    Prior Mating Experience Modulates the Dispersal of Drosophila in Males More Than in Females

    Get PDF
    Cues from both an animal’s internal physiological state and its local environment may influence its decision to disperse. However, identifying and quantifying the causative factors underlying the initiation of dispersal is difficult in uncontrolled natural settings. In this study, we automatically monitored the movement of fruit flies and examined the influence of food availability, sex, and reproductive status on their dispersal between laboratory environments. In general, flies with mating experience behave as if they are hungrier than virgin flies, leaving at a greater rate when food is unavailable and staying longer when it is available. Males dispersed at a higher rate and were more active than females when food was unavailable, but tended to stay longer in environments containing food than did females. We found no significant relationship between weight and activity, suggesting the behavioral differences between males and females are caused by an intrinsic factor relating to the sex of a fly and not simply its body size. Finally, we observed a significant difference between the dispersal of the natural isolate used throughout this study and the widely-used laboratory strain, Canton-S, and show that the difference cannot be explained by allelic differences in the foraging gene

    Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)

    Get PDF
    Bovine TB is a major problem for the agricultural industry in several countries. TB can be contracted and spread by species other than cattle and this can cause a problem for disease control. In the UK and Ireland, badgers are a recognised reservoir of infection and there has been substantial discussion about potential control strategies. We present a coupling of individual based models of bovine TB in badgers and cattle, which aims to capture the key details of the natural history of the disease and of both species at approximately county scale. The model is spatially explicit it follows a very large number of cattle and badgers on a different grid size for each species and includes also winter housing. We show that the model can replicate the reported dynamics of both cattle and badger populations as well as the increasing prevalence of the disease in cattle. Parameter space used as input in simulations was swept out using Latin hypercube sampling and sensitivity analysis to model outputs was conducted using mixed effect models. By exploring a large and computationally intensive parameter space we show that of the available control strategies it is the frequency of TB testing and whether or not winter housing is practised that have the most significant effects on the number of infected cattle, with the effect of winter housing becoming stronger as farm size increases. Whether badgers were culled or not explained about 5%, while the accuracy of the test employed to detect infected cattle explained less than 3% of the variance in the number of infected cattle

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Axion-like-particle search with high-intensity lasers

    Full text link
    We study ALP-photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV\mathrm{eV} mass range and can thus complement ALP searches at dipole magnets.Comment: 25 pages, 2 figure
    corecore