1,585 research outputs found

    Mass Flow Control in a Magnesium Hall-effect Thruster

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83626/1/AIAA-2010-6861-269.pd

    The White Dwarf Cooling Sequence of NGC6397

    Get PDF
    We present the results of a deep Hubble Space Telescope (HST) exposure of the nearby globular cluster NGC6397, focussing attention on the cluster's white dwarf cooling sequence. This sequence is shown to extend over 5 magnitudes in depth, with an apparent cutoff at magnitude F814W=27.6. We demonstrate, using both artificial star tests and the detectability of background galaxies at fainter magnitudes, that the cutoff is real and represents the truncation of the white dwarf luminosity function in this cluster. We perform a detailed comparison between cooling models and the observed distribution of white dwarfs in colour and magnitude, taking into account uncertainties in distance, extinction, white dwarf mass, progenitor lifetimes, binarity and cooling model uncertainties. After marginalising over these variables, we obtain values for the cluster distance modulus and age of \mu_0 = 12.02 \pm 0.06 and T_c = 11.47 \pm 0.47Gyr (95% confidence limits). Our inferred distance and white dwarf initial-final mass relations are in good agreement with other independent determinations, and the cluster age is consistent with, but more precise than, prior determinations made using the main sequence turnoff method. In particular, within the context of the currently accepted \Lambda CDM cosmological model, this age places the formation of NGC6397 at a redshift z=3, at a time when the cosmological star formation rate was approaching its peak.Comment: 56 pages, 30 figure

    Deep ACS Imaging in the Globular Cluster NGC6397: Dynamical Models

    Full text link
    We present N-body models to complement deep imaging of the metal-poor core-collapsed cluster NGC6397 obtained with the Hubble Space Telescope. All simulations include stellar and binary evolution in-step with the stellar dynamics and account for the tidal field of the Galaxy. We focus on the results of a simulation that began with 100000 objects (stars and binaries), 5% primordial binaries and Population II metallicity. After 16 Gyr of evolution the model cluster has about 20% of the stars remaining and has reached core-collapse. We compare the color-magnitude diagrams of the model at this age for the central region and an outer region corresponding to the observed field of NGC6397 (about 2-3 half-light radii from the cluster centre). This demonstrates that the white dwarf population in the outer region has suffered little modification from dynamical processes - contamination of the luminosity function by binaries and white dwarfs with non-standard evolution histories is minimal and should not significantly affect measurement of the cluster age. We also show that the binary fraction of main-sequence stars observed in the NGC6397 field can be taken as representative of the primordial binary fraction of the cluster. For the mass function of the main-sequence stars we find that although this has been altered significantly by dynamics over the cluster lifetime, especially in the central and outer regions, that the position of the observed field is close to optimal for recovering the initial mass function of the cluster stars (below the current turn-off mass). More generally we look at how the mass function changes with radius in a dynamically evolved stellar cluster and suggest where the best radial position to observe the initial mass function is for clusters of any age.Comment: 34 pages, 11 figures, submitted to AJ, companion paper to 0708.403

    A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia

    Get PDF
    Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar \u27membrane+matrix\u27 was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140. This article has an associated First Person interview with the first author of the paper

    Deep ACS Imaging in the Globular Cluster NGC 6397: The Cluster Color Magnitude Diagram and Luminosity Function

    Full text link
    We present the CMD from deep HST imaging in the globular cluster NGC 6397. The ACS was used for 126 orbits to image a single field in two colors (F814W, F606W) 5 arcmin SE of the cluster center. The field observed overlaps that of archival WFPC2 data from 1994 and 1997 which were used to proper motion (PM) clean the data. Applying the PM corrections produces a remarkably clean CMD which reveals a number of features never seen before in a globular cluster CMD. In our field, the main sequence stars appeared to terminate close to the location in the CMD of the hydrogen-burning limit predicted by two independent sets of stellar evolution models. The faintest observed main sequence stars are about a magnitude fainter than the least luminous metal-poor field halo stars known, suggesting that the lowest luminosity halo stars still await discovery. At the bright end the data extend beyond the main sequence turnoff to well up the giant branch. A populous white dwarf cooling sequence is also seen in the cluster CMD. The most dramatic features of the cooling sequence are its turn to the blue at faint magnitudes as well as an apparent truncation near F814W = 28. The cluster luminosity and mass functions were derived, stretching from the turn off down to the hydrogen-burning limit. It was well modeled with either a very flat power-law or a lognormal function. In order to interpret these fits more fully we compared them with similar functions in the cluster core and with a full N-body model of NGC 6397 finding satisfactory agreement between the model predictions and the data. This exercise demonstrates the important role and the effect that dynamics has played in altering the cluster IMF.Comment: 43 pages including 4 tables and 12 diagrams. Figures 2 and 3 have been bitmapped. Accepted for publication in the Astronomical Journa

    Fertility Control Options for Management of Free-roaming Horse Populations

    Get PDF
    The management of free-roaming horses (Equus ferus) and burros (E. asinus) in the United States has been referred to as a “wicked problem” because, although there are population control options, societal values will ultimately determine what is acceptable and what is not. In the United States, free-roaming equids are managed by different types of organizations and agencies, and the landscapes that these animals inhabit vary widely in terms of access, size, topography, climate, natural resources, flora, and fauna. This landscape diversity, coupled with contemporary socioeconomic and political environments, means that adaptive management practices are needed to regulate these free-roaming populations. The Bureau of Land Management (BLM) currently manages free-roaming equids on 177 herd management areas in the United States by applying fertility control measures in situ and/or removing horses, which are either adopted by private individuals or sent to long-term holding facilities. The BLM off-range population currently includes \u3e50,000 animals and costs approximately $50 million USD per year to maintain; on-range equid numbers were estimated in March 2022 to be approximately 82,384. On-range populations can grow at 15–20% annually, and current estimates far exceed the designated appropriate management level of 26,715. To reduce population recruitment, managers need better information about effective, long-lasting or permanent fertility control measures. Because mares breed only once a year, fertility control studies take years to complete. Some contraceptive approaches have been studied for decades, and results from various trials can collectively inform future research directions and actions. Employing 1 or more fertility control tools in concert with removals offers the best potential for success. Active, iterative, cooperative, and thoughtful management practices can protect free-roaming horses while simultaneously protecting the habitat. Herein, we review contraceptive vaccines, intrauterine devices, and surgical sterilization options for controlling fertility of free-roaming horses. This review provides managers with a “fertility control toolbox” and guides future research

    Boundaries of Disk-like Self-affine Tiles

    Full text link
    Let T:=T(A,D)T:= T(A, {\mathcal D}) be a disk-like self-affine tile generated by an integral expanding matrix AA and a consecutive collinear digit set D{\mathcal D}, and let f(x)=x2+px+qf(x)=x^{2}+px+q be the characteristic polynomial of AA. In the paper, we identify the boundary T\partial T with a sofic system by constructing a neighbor graph and derive equivalent conditions for the pair (A,D)(A,{\mathcal D}) to be a number system. Moreover, by using the graph-directed construction and a device of pseudo-norm ω\omega, we find the generalized Hausdorff dimension dimHω(T)=2logρ(M)/logq\dim_H^{\omega} (\partial T)=2\log \rho(M)/\log |q| where ρ(M)\rho(M) is the spectral radius of certain contact matrix MM. Especially, when AA is a similarity, we obtain the standard Hausdorff dimension dimH(T)=2logρ/logq\dim_H (\partial T)=2\log \rho/\log |q| where ρ\rho is the largest positive zero of the cubic polynomial x3(p1)x2(qp)xqx^{3}-(|p|-1)x^{2}-(|q|-|p|)x-|q|, which is simpler than the known result.Comment: 26 pages, 11 figure

    F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling

    Get PDF
    During cell migration, F-actin bundles/filopodia serve as templates for formation and orientation of lamellipodia and prime their stabilization by adhesion-based PI3K signaling.Mesenchymal cells such as fibroblasts are weakly polarized and reorient directionality by a lamellipodial branching mechanism that is stabilized by phosphoinositide 3-kinase (PI3K) signaling. However, the mechanisms by which new lamellipodia are initiated and directed are unknown. Using total internal reflection fluorescence microscopy to monitor cytoskeletal and signaling dynamics in migrating cells, we show that peripheral F-actin bundles/filopodia containing fascin-1 serve as templates for formation and orientation of lamellipodia. Accordingly, modulation of fascin-1 expression tunes cell shape, quantified as the number of morphological extensions. Ratiometric imaging reveals that F-actin bundles/filopodia play both structural and signaling roles, as they prime the activation of PI3K signaling mediated by integrins and focal adhesion kinase. Depletion of fascin-1 ablated fibroblast haptotaxis on fibronectin but not platelet-derived growth factor chemotaxis. Based on these findings, we conceptualize haptotactic sensing as an exploration, with F-actin bundles directing and lamellipodia propagating the process and with signaling mediated by adhesions playing the role of integrator
    corecore