1,333 research outputs found

    Wave and Tidal Controls on Embayment Circulation and Headland Bypassing for an Exposed, Macrotidal Site

    Get PDF
    Headland bypassing is the transport of sediment around rocky headlands by wave and tidal action, associated with high-energy conditions and embayment circulation (e.g., mega-rips). Bypassing may be a key component in the sediment budget of many coastal cells, the quantification of which is required to predict the coastal response to extreme events and future coastal change. Waves, currents, and water levels were measured off the headland of a sandy, exposed, and macrotidal beach in 18-m and 26-m depths for 2 months. The observations were used to validate a Delft3D morphodynamic model, which was subsequently run for a wide range of scenarios. Three modes of bypassing were determined: (i) tidally-dominated control during low–moderate wave conditions [flux O (0–102 m3 day−1)]; (ii) combined tidal- and embayment circulation controls during moderate–high waves [O (103 m3 day−1)]; and (iii) multi-embayment circulation control during extreme waves [O (104 m3 day−1)]. A site-specific bypass parameter is introduced, which accurately (R2 = 0.95) matches the modelled bypass rates. A 5-year hindcast predicts bypassing is an order of magnitude less than observed cross-shore fluxes during extreme events, suggesting that bypassing at this site is insignificant at annual timescales. This work serves a starting point to generalise the prediction of headland bypassing

    The Impact of Waves and Tides on Residual Sand Transport on a Sediment‐Poor, Energetic, and Macrotidal Continental Shelf

    Get PDF
    ©2019. The Authors. The energetic, macrotidal shelf off South West England was used to investigate the influence of different tide and wave conditions and their interactions on regional sand transport patterns using a coupled hydrodynamic, wave, and sediment transport model. Residual currents and sediment transport patterns are important for the transport and distribution of littoral and shelf-sea sediments, morphological evolution of the coastal and inner continental shelf zones, and coastal planning. Waves heavily influence sand transport across this macrotidal environment. Median (50% exceedance) waves enhance transport in the tidal direction. Extreme (1% exceedance) waves can reverse the dominant transport path, shift the dominant transport phase from flood to ebb, and activate sand transport below 120-m depth. Wave-tide interactions (encompassing radiation stresses, Stoke's drift, enhanced bottom-friction and bed shear stress, refraction, current-induced Doppler shift, and wave blocking) significantly and nonlinearly enhance sand transport, determined by differencing transport between coupled, wave-only, and tide-only simulations. A new continental shelf classification scheme is presented based on sand transport magnitude due to wave-forcing, tide-forcing, and nonlinear wave-tide interactions. Classification changes between different wave/tide conditions have implications for sand transport direction and distribution across the shelf. Nonlinear interactions dominate sand transport during extreme waves at springs across most of this macrotidal shelf. At neaps, nonlinear interactions drive a significant proportion of sand transport under median and extreme waves despite negligible tide-induced transport. This emphasizes the critical need to consider wave-tide interactions when considering sand transport in energetic environments globally, where previously tides alone or uncoupled waves have been considered

    Induction of fibroblast senescence generates a non-fibrogenic myofibroblast phenotype that differentially impacts on cancer prognosis

    Get PDF
    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two

    Phytoestrogen consumption from foods and supplements and epithelial ovarian cancer risk: a population-based case control study

    Get PDF
    BACKGROUND: While there is extensive literature evaluating the impact of phytoestrogen consumption on breast cancer risk, its role on ovarian cancer has received little attention. METHODS: We conducted a population-based case-control study to evaluate phytoestrogen intake from foods and supplements and epithelial ovarian cancer risk. Cases were identified in six counties in New Jersey through the New Jersey State Cancer Registry. Controls were identified by random digit dialing, CMS (Centers for Medicare and Medicaid Service) lists, and area sampling. A total of 205 cases and 390 controls were included in analyses. Unconditional logistic regression analyses were conducted to examine associations with total phytoestrogens, as well as isoflavones (daidzein, genistein, formononetin, and glycitein), lignans (matairesinol, lariciresinol, pinoresinol, secoisolariciresinol), and coumestrol. RESULTS: No statistically significant associations were found with any of the phytoestrogens under evaluation. However, there was a suggestion of an inverse association with total phytoestrogen consumption (from foods and supplements), with an odds ratio (OR) of 0.62 (95% CI: 0.38-1.00; p for trend: 0.04) for the highest vs. lowest tertile of consumption, after adjusting for reproductive covariates, age, race, education, BMI, and total energy. Further adjustment for smoking and physical activity attenuated risk estimates (OR: 0.66; 95% CI: 0.41-1.08). There was little evidence of an inverse association for isoflavones, lignans, or coumestrol. CONCLUSIONS: This study provided some suggestion that phytoestrogen consumption may decrease ovarian cancer risk, although results did not reach statistical significance

    Complete sequence and genomic annotation of carrot torradovirus 1

    Get PDF
    Carrot torradovirus 1 (CaTV1) is a new member of the genus Torradovirus within the family Secoviridae. CaTV1 genome sequences were obtained from a previous next-generation sequencing (NGS) study and were compared to other members and tentative new members of the genus. The virus has a bipartite genome, and RACE was used to amplify and sequence each end of RNA1 and RNA2. As a result, RNA1 and RNA2 are estimated to contain 6944 and 4995 nucleotides, respectively, with RNA1 encoding the proteins involved in virus replication, and RNA2 encoding the encapsidation and movement proteins. Sequence comparisons showed that CaTV1 clustered within the non-tomato-infecting torradoviruses and is most similar to motherwort yellow mottle virus (MYMoV). The nucleotide sequence identities of the Pro-Pol and coat protein regions were below the criteria established by the ICTV for demarcating species, confirming that CaTV1 should be classified as a member of a new species within the genus Torradovirus

    Connecting with older people: multiple transitions in same place

    Get PDF
    This chapter presents an overview about sustaining dignified care for stroke patients nearing the end of their hospital stay. It explores the conceptualisation of empathy in practice in relation to a recovery trajectory of multiple transitions. Broadly these transitions concretise a cumulative change process as preparation for discharge is initiated. Approaching the discharge transition can be difficult for all concerned as organisational demands converge as a cluster of divergent mixed emotions, expectations and experiences among staff and patients. Minimal attention has been given to the emotional impact of multiple transitions characteristic of lengthy stays and so this chapter draws on the outcomes of an ethnographic study which sought to understand the process more thoroughly through the experiences of patients and staff

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201
    • 

    corecore