3,808 research outputs found

    Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease

    Get PDF
    Significance: Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer’s. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. Critical Issues: Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. Future Directions: Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted

    The Chlamydomonas genome project: A decade on

    Get PDF
    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis, and micronutrient homeostasis. Ten years since its genome project was initiated an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the omics era. Housed at Phytozome, the plant genomics portal of the Joint Genome Institute (JGI), the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of whole transcriptome sequencing (RNA-Seq) data. We present here the past, present, and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions, and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes

    Direct measurement of piston friction of internal-combustion engines using the floating-liner principle

    Get PDF
    Piston–cylinder interactions account for a significant portion of frictional losses in an internal-combustion engine. This is mainly as the result of significant changes in the operating conditions (the load, the speed and the temperature) as well as the contact geometry and the encountered topography during a typical engine cycle. These changes alter the regime of lubrication which underlies the mechanisms of friction generation. The multi-variate interactive nature of the problem requires quite complex analyses which do not fully replicate the actual in-situ conditions. Therefore, there is a need for direct measurement of cyclic friction under controlled conditions. The paper describes the use of a novel floating-liner arrangement which is capable of direct measurement of friction, its transitory mechanisms, as well as determination of the regime of lubrication

    Magnetic Field Evolution in Accreting White Dwarfs

    Get PDF
    We discuss the evolution of the magnetic field of an accreting white dwarf. We first show that the timescale for ohmic decay in the liquid interior is 8 to 12 billion years for a dipole field, and 4 to 6 billion years for a quadrupole field. We then compare the timescales for ohmic diffusion and accretion at different depths in the star, and for a simplified field structure and spherical accretion, calculate the time-dependent evolution of the global magnetic field at different accretion rates. In this paper, we neglect mass loss by classical nova explosions and assume the white dwarf mass increases with time. In this case, the field structure in the outer layers of the white dwarf is significantly modified for accretion rates above the critical rate (1-5) x 10^(-10) solar masses per year. We consider the implications of our results for observed systems. We propose that accretion-induced magnetic field changes are the missing evolutionary link between AM Her systems and intermediate polars. The shorter ohmic decay time for accreting white dwarfs provides a partial explanation of the lack of accreting systems with 10^9 G fields. In rapidly accreting systems such as supersoft X-ray sources, amplification of internal fields by compression may be important for Type Ia supernova ignition and explosion. Finally, spreading matter in the polar cap may induce complexity in the surface magnetic field, and explain why the more strongly accreting pole in AM Her systems has a weaker field. We conclude with speculations about the field evolution when classical nova explosions cause the white dwarf mass to decrease with time.Comment: To appear in MNRAS (15 pages, 10 figures); minor revision

    Arduous implementation: Does the Normalisation Process Model explain why it's so difficult to embed decision support technologies for patients in routine clinical practice

    Get PDF
    Background: decision support technologies (DSTs, also known as decision aids) help patients and professionals take part in collaborative decision-making processes. Trials have shown favorable impacts on patient knowledge, satisfaction, decisional conflict and confidence. However, they have not become routinely embedded in health care settings. Few studies have approached this issue using a theoretical framework. We explained problems of implementing DSTs using the Normalization Process Model, a conceptual model that focuses attention on how complex interventions become routinely embedded in practice.Methods: the Normalization Process Model was used as the basis of conceptual analysis of the outcomes of previous primary research and reviews. Using a virtual working environment we applied the model and its main concepts to examine: the 'workability' of DSTs in professional-patient interactions; how DSTs affect knowledge relations between their users; how DSTs impact on users' skills and performance; and the impact of DSTs on the allocation of organizational resources.Results: conceptual analysis using the Normalization Process Model provided insight on implementation problems for DSTs in routine settings. Current research focuses mainly on the interactional workability of these technologies, but factors related to divisions of labor and health care, and the organizational contexts in which DSTs are used, are poorly described and understood.Conclusion: the model successfully provided a framework for helping to identify factors that promote and inhibit the implementation of DSTs in healthcare and gave us insights into factors influencing the introduction of new technologies into contexts where negotiations are characterized by asymmetries of power and knowledge. Future research and development on the deployment of DSTs needs to take a more holistic approach and give emphasis to the structural conditions and social norms in which these technologies are enacte

    Emergency ambulance service involvement with residential care homes in the support of older people with dementia : an observational study

    Get PDF
    © 2014 Amador et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BACKGROUND: Older people resident in care homes have a limited life expectancy and approximately two-thirds have limited mental capacity. Despite initiatives to reduce unplanned hospital admissions for this population, little is known about the involvement of emergency services in supporting residents in these settings.METHODS: This paper reports on a longitudinal study that tracked the involvement of emergency ambulance personnel in the support of older people with dementia, resident in care homes with no on-site nursing providing personal care only. 133 residents with dementia across 6 care homes in the East of England were tracked for a year. The paper examines the frequency and reasons for emergency ambulance call-outs, outcomes and factors associated with emergency ambulance service use. RESULTS: 56% of residents used ambulance services. Less than half (43%) of all call-outs resulted in an unscheduled admission to hospital. In addition to trauma following a following a fall in the home, results suggest that at least a reasonable proportion of ambulance contacts are for ambulatory care sensitive conditions. An emergency ambulance is not likely to be called for older rather than younger residents or for women more than men. Length of residence does not influence use of emergency ambulance services among older people with dementia. Contact with primary care services and admission route into the care home were both significantly associated with emergency ambulance service use. The odds of using emergency ambulance services for residents admitted from a relative's home were 90% lower than the odds of using emergency ambulance services for residents admitted from their own home. CONCLUSIONS: Emergency service involvement with this vulnerable population merits further examination. Future research on emergency ambulance service use by older people with dementia in care homes, should account for important contextual factors, namely, presence or absence of on-site nursing, GP involvement, and access to residents' family, alongside resident health characteristics.Peer reviewedFinal Published versio

    Comparative algological and bacteriological examinations on biofilms developed on different substrata in a shallow soda lake

    Get PDF
    According to the European Water Framework Directives, benthic diatoms of lakes are a tool for ecological status assessment. In this study, we followed an integrative sample analysis approach, in order to find an appropriate substratum for the water qualification-oriented biomonitoring of a shallow soda lake, Lake Velencei. Six types of substrata (five artificial and one natural), i.e., andesite, granite, polycarbonate, old reed stems, Plexiglass discs and green reed, were sampled in May and in November. We analysed total alga and diatom composition, chlorophyll a content of the periphyton, surface tension and roughness of the substrata and carbon source utilisation of microbial communities. Water quality index was calculated based on diatom composition. Moreover, using a novel statistical tool, a self-organising map, we related algal composition to substratum types. Biofilms on plastic substrates deviated to a great extent from the stone and reed substrata, with regard to the parameters measured, whereas the biofilms developing on reed and stone substrata were quite similar. We conclude that for water quality monitoring purposes, sampling from green reed during springtime is not recommended, since this is the colonization time of periphyton on the newly growing reed, but it may be appropriate from the second half of the vegetation period. Stone and artificially placed old reed substrata may be appropriate for biomonitoring of shallow soda lakes in both spring and autumn since they showed in both seasons similar results regarding all measured features

    2D-Qsar for 450 types of amino acid induction peptides with a novel substructure pair descriptor having wider scope

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative structure-activity relationships (QSAR) analysis of peptides is helpful for designing various types of drugs such as kinase inhibitor or antigen. Capturing various properties of peptides is essential for analyzing two-dimensional QSAR. A descriptor of peptides is an important element for capturing properties. The atom pair holographic (APH) code is designed for the description of peptides and it represents peptides as the combination of thirty-six types of key atoms and their intermediate binding between two key atoms.</p> <p>Results</p> <p>The substructure pair descriptor (SPAD) represents peptides as the combination of forty-nine types of key substructures and the sequence of amino acid residues between two substructures. The size of the key substructures is larger and the length of the sequence is longer than traditional descriptors. Similarity searches on C5a inhibitor data set and kinase inhibitor data set showed that order of inhibitors become three times higher by representing peptides with SPAD, respectively. Comparing scope of each descriptor shows that SPAD captures different properties from APH.</p> <p>Conclusion</p> <p>QSAR/QSPR for peptides is helpful for designing various types of drugs such as kinase inhibitor and antigen. SPAD is a novel and powerful descriptor for various types of peptides. Accuracy of QSAR/QSPR becomes higher by describing peptides with SPAD.</p
    corecore