1,937 research outputs found

    Towards a microscopic theory of toroidal moments in bulk periodic crystals

    Full text link
    We present a theoretical analysis of magnetic toroidal moments in periodic systems, in the limit in which the toroidal moments are caused by a time and space reversal symmetry breaking arrangement of localized magnetic dipole moments. We summarize the basic definitions for finite systems and address the question of how to generalize these definitions to the bulk periodic case. We define the toroidization as the toroidal moment per unit cell volume, and we show that periodic boundary conditions lead to a multivaluedness of the toroidization, which suggests that only differences in toroidization are meaningful observable quantities. Our analysis bears strong analogy to the modern theory of electric polarization in bulk periodic systems, but we also point out some important differences between the two cases. We then discuss the instructive example of a one-dimensional chain of magnetic moments, and we show how to properly calculate changes of the toroidization for this system. Finally, we evaluate and discuss the toroidization (in the local dipole limit) of four important example materials: BaNiF_4, LiCoPO_4, GaFeO_3, and BiFeO_3.Comment: replaced with final (published) version, which includes some changes in the text to improve the clarity of presentatio

    Bedrock Geology of Karbers Ridge Quadrangle, Hardin, Gallatin, and Saline Counties, Illinois

    Get PDF
    USGS STATEMAPpublished or submitted for publicatio

    General Relativistic 1+3 Orthonormal Frame Approach Revisited

    Full text link
    The equations of the 1+3 orthonormal frame approach are explicitly presented and discussed. Natural choices of local coordinates are mentioned. A dimensionless formulation is subsequently given. It is demonstrated how one can obtain a number of interesting problems by specializing the general equations. In particular, equation systems for ``silent'' dust cosmological models also containing magnetic Maxwell fields, locally rotationally symmetric spacetime geometries and spatially homogeneous cosmological models are presented. We show that while the 3-Cotton--York tensor is zero for Szekeres dust models, it is nonzero for a generic representative within the ``silent'' class.Comment: 41 pages, uufiles encoded postscript file, submitted to Phys. Rev.

    Time of harvest affects United States-grown Aronia mitschurinii berry polyphenols, â—¦Brix, and acidity

    Get PDF
    The goal of this study was to determine how the date of harvest impacts the quality characteristics of Aronia mitschurinii (A. K. Skvortsov and Maitul.) ‘Viking’ and ‘Galicjanka’ berries. Aronia berries were collected from farms in the Midwestern and Northeastern United States over seven weeks of harvest during 2018, 2019 and 2020. The berries were analyzed for total phenol, anthocyanins, proanthocyanins, sugar, and acid. Aronia berry composition modestly deviated between each year of the study. Berries harvested in 2018 had the highest total phenols and proanthocyanidins, both increasing in content from weeks 1–5 from 15.90 ± 3.15–19.65 mg gallic acid equivalents/g fw, a 24% increase, and 2.22 ± 0.40–2.94 mg (+)-catechin equivalents/g fw, a 32% increase, respectively. Berries harvested in 2019 had the lowest total phenol and proanthocyanidin levels and had increasing anthocyanins until week 4. In 2020, aronia berry proanthocyanidins differed from those in 2018 by having 38% lower levels after the 4th week. Across years, berries had increasing ◦Brix, ◦Brix: acid, and pH throughout the seven weeks of harvest. Additionally, all years had slight, but statistically insignificant decreases in acidity over the harvest period. Moreover, analysis from berries collected in 2019 suggests no significant difference in quality factors between Viking and Galicjanka aronia cultivars. In conclusion, aronia berry total phenols, proanthocyanidins, pH, and berry size can be significantly affected by the growing year and time of harvest. Acidity was impacted more by growing year than harvest week. In contrast, anthocyanins and ◦Brix were consistent between years, but influenced considerably by the week of harvest

    Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K

    Get PDF
    The second dissociation constants of the amino acids βalanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, and L-proline and the third dissociation constants of L-glutamic acid and L-aspartic acid have been determined from electromotive force measurements at temperatures from (293 to 353) K. Experimental results are reported and compared to literature values. Values of the standard state thermodynamic properties are derived from the experimental results and compared to the values of commercially available amines used as absorbents for CO 2 capture.

    A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 16 (2016): 10899-10910, doi:10.5194/acp-16-10899-2016.Extensive undersaturations of carbon tetrachloride (CCl4) in Pacific, Atlantic, and Southern Ocean surface waters indicate that atmospheric CCl4 is consumed in large amounts by the ocean. Observations made on 16 research cruises between 1987 and 2010, ranging in latitude from 60° N to 77° S, show that negative saturations extend over most of the surface ocean. Corrected for physical effects associated with radiative heat flux, mixing, and air injection, these anomalies were commonly on the order of −5 to −10 %, with no clear relationship to temperature, productivity, or other gross surface water characteristics other than being more negative in association with upwelling. The atmospheric flux required to sustain these undersaturations is 12.4 (9.4–15.4) Gg yr−1, a loss rate implying a partial atmospheric lifetime with respect to the oceanic loss of 183 (147–241) yr and that  ∼  18 (14–22)  % of atmospheric CCl4 is lost to the ocean. Although CCl4 hydrolyzes in seawater, published hydrolysis rates for this gas are too slow to support such large undersaturations, given our current understanding of air–sea gas exchange rates. The even larger undersaturations in intermediate depth waters associated with reduced oxygen levels, observed in this study and by other investigators, strongly suggest that CCl4 is ubiquitously consumed at mid-depth, presumably by microbiota. Although this subsurface sink creates a gradient that drives a downward flux of CCl4, the gradient alone is not sufficient to explain the observed surface undersaturations. Since known chemical losses are likewise insufficient to sustain the observed undersaturations, this suggests a possible biological sink for CCl4 in surface or near-surface waters of the ocean. The total atmospheric lifetime for CCl4, based on these results and the most recent studies of soil uptake and loss in the stratosphere is now 32 (26–43) yr.This research could not have been done without the support of our various institutions and the programs through which they support science, including funds at various times from NASA’s Upper Atmosphere Research Program, the US Department of Energy, NOAA’s Climate Program Office, the Atmospheric and Geosciences sections of the National Science Foundation, and the National Research Council of the US National Academies of Science

    A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 16 (2016): 10899-10910, doi:10.5194/acp-16-10899-2016.Extensive undersaturations of carbon tetrachloride (CCl4) in Pacific, Atlantic, and Southern Ocean surface waters indicate that atmospheric CCl4 is consumed in large amounts by the ocean. Observations made on 16 research cruises between 1987 and 2010, ranging in latitude from 60° N to 77° S, show that negative saturations extend over most of the surface ocean. Corrected for physical effects associated with radiative heat flux, mixing, and air injection, these anomalies were commonly on the order of −5 to −10 %, with no clear relationship to temperature, productivity, or other gross surface water characteristics other than being more negative in association with upwelling. The atmospheric flux required to sustain these undersaturations is 12.4 (9.4–15.4) Gg yr−1, a loss rate implying a partial atmospheric lifetime with respect to the oceanic loss of 183 (147–241) yr and that  ∼  18 (14–22)  % of atmospheric CCl4 is lost to the ocean. Although CCl4 hydrolyzes in seawater, published hydrolysis rates for this gas are too slow to support such large undersaturations, given our current understanding of air–sea gas exchange rates. The even larger undersaturations in intermediate depth waters associated with reduced oxygen levels, observed in this study and by other investigators, strongly suggest that CCl4 is ubiquitously consumed at mid-depth, presumably by microbiota. Although this subsurface sink creates a gradient that drives a downward flux of CCl4, the gradient alone is not sufficient to explain the observed surface undersaturations. Since known chemical losses are likewise insufficient to sustain the observed undersaturations, this suggests a possible biological sink for CCl4 in surface or near-surface waters of the ocean. The total atmospheric lifetime for CCl4, based on these results and the most recent studies of soil uptake and loss in the stratosphere is now 32 (26–43) yr.This research could not have been done without the support of our various institutions and the programs through which they support science, including funds at various times from NASA’s Upper Atmosphere Research Program, the US Department of Energy, NOAA’s Climate Program Office, the Atmospheric and Geosciences sections of the National Science Foundation, and the National Research Council of the US National Academies of Science

    The Covariant Approach to LRS Perfect Fluid Spacetime Geometries

    Full text link
    The dynamics of perfect fluid spacetime geometries which exhibit {\em Local Rotational Symmetry} (LRS) are reformulated in the language of a 1+ 31+\,3 "threading" decomposition of the spacetime manifold, where covariant fluid and curvature variables are used. This approach presents a neat alternative to the orthonormal frame formalism. The dynamical equations reduce to a set of differential relations between purely scalar quantities. The consistency conditions are worked out in a transparent way. We discuss their various subcases in detail and focus in particular on models with higher symmetries within the class of expanding spatially inhomogeneous LRS models, via a consideration of functional dependencies between the dynamical variables.Comment: 25 pages, uuencoded/compressed postscript fil

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    'An outsider in our midst': narratives of Neil Lennon, soccer and ethno-religious igotry in the Scottish press

    Get PDF
    This essay offers a critique of media narratives concerning soccer and those of 'difference' in contemporary Scotland, in particular those who have Irishness as their different identity. It examines certain newspaper narratives concerning Neil Lennon of Celtic FC during autumn 2005. During this period Lennon was characterized as a soccer villain. The commentaries drew on existing perceptions concerning his personality and style of play. More importantly Lennon's national identity (Irish) and his religious background (Catholic) were integrated into the narratives, marking him as an outsider in Scotland. These narratives resonate with public and private discourses of 'otherness' concerning the Irish Catholic diaspora community in Scotland. These broader discourses are manifest as ethno-religious prejudices directed against this community. The discourses of 'outsider' and 'otherness' that surround Lennon, Celtic FC and the Irish Catholic community expose the myth of Scotland's collective self-image as an egalitarian and inclusive society
    • …
    corecore