4,099 research outputs found
Geometrization of metric boundary data for Einstein's equations
The principle part of Einstein equations in the harmonic gauge consists of a
constrained system of 10 curved space wave equations for the components of the
space-time metric. A well-posed initial boundary value problem based upon a new
formulation of constraint-preserving boundary conditions of the Sommerfeld type
has recently been established for such systems. In this paper these boundary
conditions are recast in a geometric form. This serves as a first step toward
their application to other metric formulations of Einstein's equations.Comment: Article to appear in Gen. Rel. Grav. volume in memory of Juergen
Ehler
Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.
Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives
Initial data for fluid bodies in general relativity
We show that there exist asymptotically flat almost-smooth initial data for
Einstein-perfect fluid's equation that represent an isolated liquid-type body.
By liquid-type body we mean that the fluid energy density has compact support
and takes a strictly positive constant value at its boundary. By almost-smooth
we mean that all initial data fields are smooth everywhere on the initial
hypersurface except at the body boundary, where tangential derivatives of any
order are continuous at that boundary.
PACS: 04.20.Ex, 04.40.Nr, 02.30.JrComment: 38 pages, LaTeX 2e, no figures. Accepted for publication in Phys.
Rev.
Transfer learning for galaxy morphology from one survey to another
© 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.Deep Learning (DL) algorithms for morphological classification of galaxies have proven very successful, mimicking (or even improving) visual classifications. However, these algorithms rely on large training samples of labelled galaxies (typically thousands of them). A key question for using DL classifications in future Big Data surveys is how much of the knowledge acquired from an existing survey can be exported to a new dataset, i.e. if the features learned by the machines are meaningful for different data. We test the performance of DL models, trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy survey (DES) using images for a sample of 5000 galaxies with a similar redshift distribution to SDSS. Applying the models directly to DES data provides a reasonable global accuracy ( 90%), but small completeness and purity values. A fast domain adaptation step, consisting in a further training with a small DES sample of galaxies (500-300), is enough for obtaining an accuracy > 95% and a significant improvement in the completeness and purity values. This demonstrates that, once trained with a particular dataset, machines can quickly adapt to new instrument characteristics (e.g., PSF, seeing, depth), reducing by almost one order of magnitude the necessary training sample for morphological classification. Redshift evolution effects or significant depth differences are not taken into account in this study.Peer reviewedFinal Accepted Versio
Causal propagation of geometrical fields in relativistic cosmology
We employ the extended 1+3 orthonormal frame formalism for fluid spacetime
geometries , which contains the Bianchi field
equations for the Weyl curvature, to derive a 44-D evolution system of
first-order symmetric hyperbolic form for a set of geometrically defined
dynamical field variables. Describing the matter source fields
phenomenologically in terms of a barotropic perfect fluid, the propagation
velocities (with respect to matter-comoving observers that Fermi-propagate
their spatial reference frames) of disturbances in the matter and the
gravitational field, represented as wavefronts by the characteristic 3-surfaces
of the system, are obtained. In particular, the Weyl curvature is found to
account for two (non-Lorentz-invariant) Coulomb-like characteristic eigenfields
propagating with and four transverse characteristic eigenfields
propagating with , which are well known, and four
(non-Lorentz-invariant) longitudinal characteristic eigenfields propagating
with |v| = \sfrac{1}{2}. The implications of this result are discussed in
some detail and a parallel is drawn to the propagation of irregularities in the
matter distribution. In a worked example, we specialise the equations to
cosmological models in locally rotationally symmetric class II and include the
constraints into the set of causally propagating dynamical variables.Comment: 25 pages, RevTeX (10pt), accepted for publication by Physical Review
Collective modes in the electronic polarization of double-layer systems in the superconducting state
Standard weak coupling methods are used to study collective modes in the
superconducting state of a double-layer system with intralayer and interlayer
interaction, as well as a Josephson-type coupling and single particle hopping
between the layers by calculating the electronic polarization function
perpendicular to the layers. New analytical results are derived for the mode
frequencies corresponding to fluctuations of the relative phase and amplitude
of the layer order parameters in the case of interlayer pairing and finite
hopping . A new effect is found for finite -dependent hopping: then the
amplitude and phase fluctuations are coupled. Therefore two collective modes
may appear in the dynamical c-axis conductivity below the threshold energy for
breaking Cooper pairs. With help of numerical calculations we investigate the
temperature dependence of the collective modes and show how a plasmon
corresponding to charge fluctuations between the layers evolves in the normal
state.Comment: 17 pages, latex, 8 ps figure
- …
