78 research outputs found

    Extreme Flood Sediment Production and Export Controlled by Reach‐Scale Morphology

    Get PDF
    Rapid earth surface evolution is discrete in nature, with short-duration extreme events having a widespread impact on landscapes despite occurring relatively infrequently. Here, we exploit a unique opportunity to identify the broad, process-based, controls on sediment production and export during extreme rainfall-runoff events through a multi-catchment analysis. A 3 hr extreme rainfall event generated significantly different impacts across three catchments, ranging from (a) sediment export exceeding two orders of magnitude more than the typical long term average to (b) a minimal impact, with this variability primarily controlled by catchment steepness and the presence of reach-scale morphological transitions caused by postglacial landscape adjustment. In any catchment worldwide where populations are at risk, we highlight the importance of combining topographic analysis with detailed mapping of channel bed material (e.g., presence of transitions between process domains) and identification of sediment sources within morphological transition zones for accurately predicting the impact of extreme events

    Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30-year analysis of the Himalaya

    Get PDF
    This paper presents a remote sensing-based method to efficiently generate multi-temporal landslide inventories and identify recurrent and persistent landslides. We used free data from Landsat, nighttime lights, digital elevation models, and a convolutional neural network model to develop the first multi-decadal inventory of landslides across the Himalaya, spanning from 1992 to 2021. The model successfully delineated >265,000 landslides, accurately identifying 83 % of manually mapped landslide areas and 94 % of reported landslide events in the region. Surprisingly, only 14 % of landslide areas each year were first occurrences, 55–83 % of landslide areas were persistent and 3–24 % had reactivated. On average, a landslide-affected pixel persisted for 4.7 years before recovery, a duration shorter than findings from small-scale studies following a major earthquake event. Among the recovered areas, 50 % of them experienced recurrent landslides after an average of five years. In fact, 22 % of landslide areas in the Himalaya experienced at least three episodes of landslides within 30 years. Disparities in landslide persistence across the Himalaya were pronounced, with an average recovery time of 6 years for Western India and Nepal, compared to 3 years for Bhutan and Eastern India. Slope and elevation emerged as significant controls of persistent and recurrent landslides. Road construction, afforestation policies, and seismic and monsoon activities were related to changes in landslide patterns in the Himalaya

    Changing Significance of Landslide Hazard and Risk After The 2015 Mw 7.8 Gorkha, Nepal Earthquake

    Get PDF
    The 2015 Mw 7.8 Gorkha, Nepal Earthquake triggered in excess of 20,000 landslides across 14 districts of Central and Western Nepal. Whilst the instantaneous impact of these landslides was significant, the ongoing effect of the earthquake on changing the potential for rainfall-triggered landsliding in the months and years that followed has remained poorly understood and challenging to predict. To provide insight into how landsliding has evolved since the earthquake, and how it has impacted those living in the affected area, a detailed time-series landslide mapping campaign was undertaken to monitor the evolution of coseismic landslides and the initiation of new post-seismic landslides. This was supplemented by numerical modelling to simulate the future potential reactivation and runout of landslides as debris flows under monsoon rainfall, identifying locations potentially at risk. This analysis shows that landslide hazard was higher in November 2019 as compared to immediately after the 2015 earthquake, with a considerable portion of the landscape being impacted by landsliding. We show that, while pre-existing landslides continued to pose the majority of hazard in the aftermath of the earthquake, a significant number of landslides also occurred in new locations. We discuss the value of this type of analysis in informing the reconstruction and management of settlements at risk by summarizing how this work was integrated into the project Durable Solutions II, that supported communities at risk from landslides. Finally, we consider how such data could be used in future to inform risk sensitive land-use planning and disaster recovery, and to mitigate the impacts of future landsliding in Nepal and beyond

    Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

    Get PDF
    Landslides triggered by large earthquakes in mountainous regions contribute significantly to overall earthquake losses and pose a major secondary hazard that can persist for months or years. While scientific investigations of coseismic landsliding are increasingly common, there is no protocol for rapid (hours-to-days) humanitarian-facing landslide assessment and no published recognition of what is possible and what is useful to compile immediately after the event. Drawing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated. We find that, at present, many forms of landslide assessment are too slow to generate relative to the speed of a humanitarian response, despite increasingly rapid access to high-quality imagery. Importantly, the value of information on landslides evolves rapidly as a disaster response develops, so identifying the purpose, timescales, and end users of a post-earthquake landslide assessment is essential to inform the approach taken. It is clear that discussions are needed on the form and timing of landslide assessments, and how best to present and share this information, before rather than after an earthquake strikes. In this paper, we share the lessons learned from the Gorkha earthquake, with the aim of informing the approach taken by scientists to understand the evolving landslide hazard in future events and the expectations of the humanitarian community involved in disaster response. Please read the corrigendum first before accessing the articl

    National-Scale Rainfall-Triggered Landslide Susceptibility and Exposure in Nepal

    Get PDF
    Nepal is one of the most landslide-prone countries in the world, with year-on-year impacts resulting in loss of life and imposing a chronic impediment to sustainable livelihoods. Living with landslides is a daily reality for an increasing number of people, so establishing the nature of landslide hazard and risk is essential. Here we develop a model of landslide susceptibility for Nepal and use this to generate a nationwide geographical profile of exposure to rainfall-triggered landslides. We model landslide susceptibility using a fuzzy overlay approach based on freely-available topographic data, trained on an inventory of mapped landslides, and combine this with high resolution population and building data to describe the spatial distribution of exposure to landslides. We find that whilst landslide susceptibility is highest in the High Himalaya, exposure is highest within the Middle Hills, but this is highly spatially variable and skewed to on average relatively low values. Around 4 × 106 Nepalis (∼15\% of the population) live in areas considered to be at moderate or higher degree of exposure to landsliding (>0.25 of the maximum), and critically this number is highly sensitive to even small variations in landslide susceptibility. Our results show a complex relationship between landslides and buildings, that implies wider complexity in the association between physical exposure to landslides and poverty. This analysis for the first time brings into focus the geography of the landslide exposure and risk case load in Nepal, and demonstrates limitations of assessing future risk based on limited records of previous events

    Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

    Get PDF
    Landslides triggered by large earthquakes in mountainous regions contribute significantly to overall earthquake losses and pose a major secondary hazard that can persist for months or years. While scientific investigations of coseismic landsliding are increasingly common, there is no protocol for rapid (hours-to-days) humanitarian-facing landslide assessment and no published recognition of what is possible and what is useful to compile immediately after the event. Drawing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated. We find that, at present, many forms of landslide assessment are too slow to generate relative to the speed of a humanitarian response, despite increasingly rapid access to high-quality imagery. Importantly, the value of information on landslides evolves rapidly as a disaster response develops, so identifying the purpose, timescales, and end users of a post-earthquake landslide assessment is essential to inform the approach taken. It is clear that discussions are needed on the form and timing of landslide assessments, and how best to present and share this information, before rather than after an earthquake strikes. In this paper, we share the lessons learned from the Gorkha earthquake, with the aim of informing the approach taken by scientists to understand the evolving landslide hazard in future events and the expectations of the humanitarian community involved in disaster response

    Modelling post‐earthquake cascading hazards: Changing patterns of landslide runout following the 2015 Gorkha earthquake, Nepal

    Get PDF
    Coseismic landslides represent the first stage of a broader cascading sequence of geohazards associated with high-magnitude continental earthquakes, with the subsequent remobilisation of coseismic landslide debris posing a long-term post-seismic legacy in mountain regions. Here, we quantify the controls on the hazard posed by landslide remobilisation and debris runout, and compare the overlap between areas at risk of runout and the pattern of post-seismic landslides and debris flows that actually occurred. Focusing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we show that the extent of the area that could be affected by debris runout remained elevated above coseismic levels 4.5 years after the event. While 150 km2 (0.6% of the study area) was directly impacted by landslides in the earthquake, an additional 614 km2 (2.5%) was left at risk from debris runout, increasing to 777 km2 (3.2%) after the 2019 monsoon. We evaluate how this area evolved by comparing modelled predictions of runout from coseismic landslides to multi-temporal post-seismic landslide inventories, and find that 14% (85 km2) of the total modelled potential runout area experienced landslide activity within 4.5 years after the earthquake. This value increases to 32% when modelled runout probability is thresholded, equivalent to 10 km2 of realised runout from a remaining modelled area of 32 km2. Although the proportion of the modelled runout area from coseismic landslides that remains a hazard has decreased through time, the overall runout susceptibility for the study area remains high. This indicates that runout potential is changing both spatially and temporally as a result of changes to the landslide distribution after the earthquake. These findings are particularly important for understanding evolving patterns of cascading hazards following large earthquakes, which is crucial for guiding decision-making associated with post-seismic recovery and reconstruction

    Assessing riverine threats to heritage assets posed by future climate change: a methodological approach based on understanding geomorphological inheritance and predictive modelling, tested within the Derwent Valley Mills WHS, UK

    Get PDF
    Future climate change is likely to pose significant challenges for heritage management, especially in landscape settings such as river valleys as the magnitude, intensity and nature of geomorphological processes alter in response to changing threshold conditions. Industrial landscapes afford particular challenges for the heritage community, not only because the location of these historic remains is often intimately linked to the physical environment, but also because these landscapes can be heavily polluted by former (industrial) processes and, if released, the legacy of contaminants trapped in floodplain soils and sediments can exacerbate erosion and denudation. Responding to these challenges requires the development of methodologies that consider landscape change beyond individual sites and monuments and this paper reports the development of such an approach based on investigation of the Derwent Valley Mills World Heritage Site, Derbyshire, UK. Information on geomorphological evolution of the Derwent Valley over the last 1000 years, a time period encompassing the last two periods of major climatic deterioration, the Medieval Warm Period and Little Ice Age, has been dovetailed with archaeological and geochemical records to assess how the landscape has evolved to past landscape change. However, in addition to assessing past evolution, this methodology uses national climate change scenarios to predict future river change using the CAESAR-Lisflood model. Comparison of the results of this model to the spatial distribution of World Heritage Site assets highlights zones on the valley floor where pro-active mitigation might be required. The geomorphological and environmental science communities have long used predictive computer modelling to help understand and manage landscapes and this paper highlights an approach and area of research cross-over that would be beneficial for future heritage management
    corecore