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Abstract 

Coseismic landslides represent the first stage of a broader cascading sequence of 

geohazards associated with high-magnitude continental earthquakes, with the 

subsequent remobilisation of coseismic landslide debris posing a long-term post-

seismic legacy in mountain regions. Here, we quantify the controls on the hazard 

posed by landslide remobilisation and debris runout, and compare the overlap 

between areas at risk of runout and the pattern of post-seismic landslides and 

debris flows that actually occurred. Focusing on the 2015 Mw 7.8 Gorkha 

earthquake in Nepal, we show that the extent of the area that could be affected 
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by debris runout remained elevated above coseismic levels 4.5 years after the 

event. While 150 km2 (0.6% of the study area) was directly impacted by 

landslides in the earthquake, an additional 614 km2 (2.5%) was left at risk from 

debris runout, increasing to 777 km2 (3.2%) after the 2019 monsoon. We 

evaluate how this area evolved by comparing modelled predictions of runout 

from coseismic landslides to multi-temporal post-seismic landslide inventories, 

and find that 14% (85 km2) of the total modelled potential runout area 

experienced landslide activity within 4.5 years after the earthquake. This value 

increases to 32% when modelled runout probability is thresholded, equivalent to 

10 km2 of realised runout from a remaining modelled area of 32 km2. Although 

the proportion of the modelled runout area from coseismic landslides that 

remains a hazard has decreased through time, the overall runout susceptibility 

for the study area remains high. This indicates that runout potential is changing 

both spatially and temporally as a result of changes to the landslide distribution 

after the earthquake. These findings are particularly important for understanding 

evolving patterns of cascading hazards following large earthquakes, which is 

crucial for guiding decision-making associated with post-seismic recovery and 

reconstruction. 

 

Keywords 

Coseismic landslides; cascading hazards; post-seismic runout; susceptibility; 

remobilisation   

 

1. Introduction 
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Earthquakes in mountainous regions can generate significant numbers of co-

seismic and post-seismic landslides, releasing large volumes of loose sediment 

and triggering a complex chain of cascading hazards that include debris flows, 

sediment aggradation, and flooding (e.g., Pearce and Watson, 1986; Robinson 

and Davies, 2013; Fan et al., 2018; Dahlquist and West, 2019). These landslides 

can remain active for several years as debris is remobilised by subsequent 

rainfall, resulting in the expansion and extension of the original landslide extent 

(Fan et al, 2018; Kincey et al., 2021). The hazards posed by this remobilisation 

process represent a significant, but generally unquantified, proportion of total 

landslide hazard experienced in post-earthquake landscapes.  

Because the spatial distribution, extent, and stability of individual active 

landslides change significantly through time, through both the remobilisation of 

existing landslides and the formation of new post-seismic landslides (Fan et al., 

2018, 2019; Marc et al., 2019; Kincey et al., 2021), the future hazard posed by 

the runout of debris must also change accordingly. Critically, thresholds for 

landslide triggering may also reduce, rendering previously safe areas hazardous 

(e.g., Dadson et al., 2004), and the most prevalent mass wasting mechanisms 

may shift to become more dominated by debris flows (Zhang and Zhang, 2017). 

Importantly, much of the coseismic landslide debris may also lie upstream of the 

channel network (Li et al., 2016) and so can run out over areas that have not 

previously experienced landslides or debris flows. Thus, the evolving landslide 

hazard after a large earthquake consists of at least four distinct components: (1) 

remobilisation of coseismic debris, (2) continued failure of coseismic landslides, 

(3) new post-seismic landslides on previously-unfailed hillslopes, and (4) 

remobilisation of post-seismic debris. Understanding the changing significance of 
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each of these different components of the hazard chain should therefore be a 

fundamental aspect of any comprehensive assessment of post-seismic risk. 

Previous studies assessing the post-seismic evolution of landslide hazard have 

focused on the analysis of multi-temporal landslide inventories to assess 

changes to existing failure extents, the occurrence of new post-seismic 

landslides, or both (e.g., Fan et al., 2018a, 2018b, 2019). For example, after the 

2015 Mw 7.8 Gorkha earthquake in Nepal, such an analysis has demonstrated 

that 3.5 years after the earthquake, landslides remained more numerous and 

covered a larger total area than they did on the day of the earthquake (Kincey et 

al., 2021). Importantly, the changing post-seismic landslide distribution 

comprised both persistently-active coseismic landslides but also new post-

seismic landslides that had developed since the earthquake; thus, the sources of 

landslide debris with the potential to runout must change over time. Similarly, in 

the years following the 2008 Mw 7.9 Wenchuan earthquake in China, the primary 

hillslope failure mechanism shifted from landslides to debris flows, with Huang 

and Li (2014) documenting a landslide/debris flow ratio of 5:1 for the pre-

seismic period and 1:1 for the initial five-year post-seismic period. This increase 

in debris flow prevalence reflected the abundance of loose coseismic debris and 

the associated reduction in the hydrological triggering threshold required for 

mobilisation (Ma et al., 2017; Fan et al., 2018a). The post-seismic increase in 

debris flow occurrence reduced through time, potentially as a result of 

progressive exhaustion of supply (Qu, 2019; Yunus et al., 2020), grain 

coarsening due to the loss of fine sediment (Domènech et al., 2019), or 

revegetation of failure scars (Yang et al., 2018; Shen et al., 2020). Debris-flow 

runout distances have also generally decreased through time, perhaps due to a 
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reduction in sediment mobility and downslope progression of debris flow 

initiation positions (Zhang and Zhang, 2017; Fan et al., 2018a).  

However, the time period over which increased debris mobilisation persists after 

an earthquake appears to vary considerably between both settings and studies. 

In their study of post-seismic debris flows in the two years following the Gorkha 

earthquake, Dahlquist and West (2019) suggested that there was only a short-

lived transient increase in debris flow rates, with the available coseismic 

sediment supply being largely exhausted during the first monsoon and a 

reduction in the number of new debris flows back to pre-seismic levels within a 

year. This rapid return to pre-seismic conditions was argued in part to be due to 

the low proportion (~2%) of coseismic landslides that actually transitioned into 

post-seismic debris flows (Roback et al., 2018; Dahlquist and West, 2019). In 

contrast, more recent and longer-term studies of post-seismic hillslope evolution 

following the Gorkha earthquake have indicated that landslide and debris flow 

hazards are still high relative to pre-seismic conditions. For example, in their 

field-based study of landslide development during the period 2015-2018, Tian et 

al. (2020) documented repeated activity and continued hazard across the 

majority of the investigated sites, with a notable shift in the dominant failure 

mechanism towards debris flows. Similarly, the 2020 monsoon is known to have 

triggered extensive debris flows across large areas of central Nepal that were 

badly affected by the Gorkha earthquake (Rosser et al., 2021), suggesting a 

persistent runout hazard legacy associated with the earthquake. This persistence 

has been noted after the Wenchuan earthquake as well, and has been ascribed 

to an abundance of coseismic sediment even years after the earthquake (Huang 

and Li, 2014; Zhang and Zhang, 2017), changing source area form and location 
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(Zhang et al., 2016; Li et al., 2018) and spatio-temporal variability in triggering 

factors such as high rainfall events (Ma et al., 2017; Yunus et al., 2020). 

A limitation of most current approaches to assessing changing landslide and 

debris-flow hazard after a large earthquake is that they have focused on 

mapping where landslides have already occurred, resulting in limited capacity to 

predict how the hazard will evolve. An alternative approach is to forecast the 

potential evolution of the hazard footprint using a runout model, and then to 

compare modelled outputs with multi-temporal inventories to assess and refine 

the runout model based on where the modelled hazard has been ‘realised’. 

Because we cannot reliably identify which landslides are likely to be remobilised 

at the full event scale, a precautionary approach is to assume that further runout 

of any landslide source remains possible. Typical approaches are to model 

potential runout pathways based on manually-mapped landslides as potential 

source areas (Aaron et al., 2019), or to use a predicted source area distribution 

based on predefined variables (Kappes et al., 2011; Pastorello et al., 2017) or a 

threshold-based landslide susceptibility model (Melo and Zezere, 2017; Paudel et 

al., 2020). Such assessments usually provide a snapshot of the hazard, and it is 

hard to test or update the hazard due to a lack of multi-epoch landslide 

inventories that describe how the landslide footprint evolves. Whilst one-off 

regional-scale debris flow hazard assessments are commonplace (e.g., Blais-

Stevens and Behnia, 2016), the degree to which runout occurs during the initial 

mass movement versus during reactivation remains poorly understood, and so is 

difficult to account for in hazard assessments.  

To address these issues, we use multi-epoch landslide inventories from the 2015 

Gorkha earthquake (Kincey et al., 2021) to assess the changing extent of 

potential runout from coseismic and post-seismic landslides in the 4.5 years 

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

following the earthquake. We use Flow-R, a spatially distributed empirical model 

for regional-scale estimation of debris runout (Horton et al., 2013), to model the 

spatial footprint of potential runout across the area that was most affected by 

the earthquake, using mapped landslides as source areas. We repeat this 

simulation based upon 13 separate epochs of landslide mapping at 

approximately 6-month intervals (2014 to 2019) and compare modelled runout 

to subsequent mapped landslides. This approach allows us to explore how 

changes in the spatial distribution and character of landslides influence the 

evolution of post-earthquake landslide runout and the degree to which landslides 

achieve or ‘realise’ the modelled runout, and to identify the controls on that 

realisation of runout potential. We use this information to derive a synoptic 

overview of the evolution of post-earthquake landslide runout and to describe 

the regional-scale characteristics of landslide runout pathways, which together 

provide inputs into a more holistic understanding of the long-term hazard chain 

associated with earthquake-triggered landslides. 

 

2. Methods 

2.1 Landslide inventory mapping 

Landslides were manually mapped from medium-resolution satellite imagery 

(Landsat 8, with a spatial resolution of 30 m pan-sharpened to 15 m for 2014-

2015; Sentinel-2, with a spatial resolution of 10 m for 2016-2019) across a 

24,402 km2 area of central Nepal that was most severely impacted by the 2015 

Gorkha earthquake (Fig. 1a). A total of 13 individual landslide epochs covered 

the period from 2014 to 2019, including pre- and post-monsoon inventories for 

each year and an additional coseismic inventory for 2015. Landslide footprints 
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incorporated both source areas and deposits due to the resolution of the satellite 

imagery. Assigning levels of post-failure reactivation and remobilisation using 

remotely-sensed imagery is not straightforward (e.g., Fan et al., 2018b) and so 

we mapped all landslides visible in each epoch independently, irrespective of 

whether they were already present within a preceding inventory. This approach 

is necessary since mapping only new or substantially-altered landslides in each 

epoch would have removed persistent landslides which could potentially act as 

source zones for later runout from the analyses. Our approach therefore makes 

the assumption that bare, unvegetated ground equates to the presence of 

exposed rock or sediment that could be mobilised in a future event, which is 

justified based on field observations (Tian et al., 2020) and a precautionary 

approach to modelling cascading hazards across such a large spatial area 

(Kincey et al., 2021). A detailed description of our mapping approach and its 

implications for time series analysis of modelled runout is provided in 

Supplementary Material 1, while full details of the multi-temporal landslide 

inventory construction and analysis are provided by Kincey et al. (2021). 

 

2.2 Runout modelling 

To assess the potential runout from existing landslides, we used the Flow path 

assessment of gravitational hazards at a Regional scale (Flow-R) model v2.0 

(Horton et al., 2013). Flow-R is a spatially distributed empirical model designed 

to model runout paths across large spatial extents with minimum input data 

requirements. Runout paths from defined source areas – here manually mapped 

landslides - are propagated on the basis of a spreading algorithm that controls 

the route and extent of the flow, and friction laws that determine the runout 
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distance. The flow volume and mass are not directly considered, as these cannot 

be accurately quantified across large regions. Instead, the model is well-suited 

to regional susceptibility assessments where the full range of possible runout 

pathways from a large set of distributed sources must be considered. Flow-R has 

been utilised in a range of different applications, including debris flow hazard 

assessments in Switzerland (Horton et al., 2008), France (Kappes et al., 2012), 

Italy (Blahut et al., 2010) and Norway (Fischer et al., 2012), as well as 

modelling other gravitational hazards such as rockfall (Michoud et al., 2012; 

Losasso et al., 2016), snow avalanches (Horton et al., 2009; Jaboyedoff et al., 

2012) and rock avalanches (Oppikofer et al., 2016). 

Runout modelling used the 13 manually-mapped landslide inventories to 

sequentially define the potential source areas (Section 2.1) and a 10 m digital 

elevation model (DEM), resampled from a 5 m resolution Advanced Land 

Observing Satellite World 3D (AW3D) dataset, as the most appropriate 

compromise between accuracy of modelled flow paths, reduction of topographic 

noise, and processing time (Claessens et al., 2005; Fischer et al., 2012; Horton 

et al., 2013) (see Supplementary Material 2 for full details of the Flow-R model 

inputs and parameters). In this configuration, the model is testing the potential 

for runout from the full landslide footprint, including continued runout from the 

landslide source and the potential for remobilisation of the deposit.  

For our analyses, spreading of the runout path was based on a modified version 

of Holmgren’s multiple flow direction algorithm (Holmgren, 1994) that includes 

an additional height factor (dh = 1 m) designed to increase the elevation of the 

central processing cell and so account for any height errors in the DEM (see 

Horton et al., 2013). Flow inertia was simulated by weighting the flow direction 

based on the change in direction with respect to the previous cell using the 
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Gamma implementation of Horton et al. (2013). Runout distances were 

quantified using a simplified friction-limited model based on the maximum 

possible runout distance, controlled by a user-defined minimum travel angle, 

also termed the angle of reach or fahrböschung angle. Based on published field 

observations of debris flows, we selected a minimum travel angle of 11° and a 

maximum flow velocity of 15 m s-1, which is required in order to restrict the flow 

energy to realistic limits and therefore avoid improbable runout distances (see 

full discussion in Horton et al., 2013). 

Tuning of model input parameters to fit individual landslides was not appropriate 

given the regional scale of the study area (>24,000 km2) and the number and 

variability of source areas used in the modelling (>195,000 landslides). Our 

parameterisation of the model was therefore based on input values that have 

been developed for modelling runout in similar mountainous terrain by previous 

studies, and through initial testing of the model to generate plausible runout 

pathways (see Supplementary Material 4). Sensitivity analysis of the different 

parameters for a subset area located in Sindhupalchok district, central Nepal 

(Fig. S3), showed that the Holmgren exponent value (x) is the most sensitive 

parameter in terms of influencing the overall modelled runout extent and 

susceptibility distributions. The travel angle and velocity threshold values 

determine the degree to which flow is permitted to continue downslope, but the 

results were relatively insensitive to the choice of the height factor (dH). The 

sensitivity analysis shows that our parameter choices represent a plausible but 

precautionary approach to the modelling of runout, which is appropriate given 

the potential implications of the work in terms of risk to life and livelihood 

(Supplementary Material 4). Sensitivity testing showed that variations in 

modelled runout extent vary by at most 43% depending on specific parameter 
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choices, but most parameter sets (70%) are within 10% of the runout area 

modelled by this study (Table S3). 

For every 10 x 10 m cell, the model assigned a susceptibility value p(Rout) with 

a value from 0 (no chance of being within a runout path) to →1 (very likely to be 

within a runout path). Landslide areas had a value of 1. The model accounted for 

cells located within multiple modelled runout pathways, from which a set of 

summary statistics were generated, including: maximum runout susceptibility 

from all upslope sources combined (Fig. 1b); the sum of all runout 

susceptibilities, which assesses total runout susceptibility irrespective of source; 

and runout count, which accumulates the number of distinct sources that could 

impact a cell irrespective of susceptibility. We refer to the locus of cells where 

p(Rout) > 0 as Rout_Mod. The sequential model runs based on the 13 multi-

temporal landslide inventories allowed an assessment of how Rout_Mod changed 

over the 4.5 years since the 2015 earthquake. 

 

2.3 Time series analysis 

Quantitative assessment of model performance using standard error statistics is 

somewhat complicated because Flow-R is a forward model, and runout from 

existing landslide source locations is time- and trigger-dependent. Thus, the 

occurrence or non-occurrence of actual runout for any given cell at a single point 

in time does not simply indicate model success or failure. In other words, the 

lack of realised runout does not show that the model failed in its prediction, 

because the actual occurrence of runout may still happen in the future if there is 

a sufficient trigger event. This study is therefore focused on an assessment of 
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how the runout distribution and realisation change through time after an 

earthquake, using a precautionary but plausible modelling approach. 

We first assessed the net change in Rout_Mod across the study area using 

aggregate statistics, per-cell values, and frequency distributions of p(Rout) for 

each epoch in turn. All cells mapped as landslides are referred to as Ls_Map, 

with any cell classified as Ls_Map relating to a model source location for that 

epoch and so excluded from the associated list of Rout_Mod runout cells. We 

refer to cells in Rout_Mod that experienced landsliding in later epochs, which we 

term ‘realisation’ of the modelled runout, as Rout_Real. For each epoch, each 10 

x 10 m cell in Rout_Mod was categorised based on whether it became part of a 

landslide during that epoch (i.e., the cell was contained within Ls_Map and so it 

became part of Rout_Real), remained within the modelled runout extent (the cell 

remained in Rout_Mod but outside of Ls_Map), or no longer fell within the 

modelled runout extent (i.e., p(Rout) = 0), which typically occurred when the 

associated upslope landslide became revegetated and was no longer visible as 

bare ground. This process was repeated for each epoch, allowing the stepwise 

evolution of Rout_Mod and the match between this and Ls_Map to be assessed 

(see Supplementary Material 3 for additional description of the runout variables 

described above). 

Since our analysis considered realised runout to include any cells within a 

modelled runout area that experienced landsliding in later epochs, this 

realisation could plausibly occur as a result of both changes to pre-existing 

landslides and the occurrence of entirely new landslides. This approach is 

justified from the perspective of informing a comprehensive post-seismic hazard 

analysis, but it is still important to also consider what proportion of realisation 
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comes from existing landslides versus entirely new landslides. To calculate this, 

we used a series of spatial selection queries to identify which landslides had a 

direct physical intersection with earlier landslides and considered these to be 

pre-existing landslides. Any landslides that had no intersection with landslides 

from earlier epochs were classified as entirely new landslides (see 

Supplementary Material 10 for full methodological details). 

Note that the percentage of Rout_Mod that is realised by the end of each epoch 

– that is, the ratio of Rout_Real to Rout_Mod – is equivalent to the model 

precision. We would expect this quantity to change over time, as runout 

proceeds and as areas within Rout_Mod that are downslope of existing landslides 

become inundated with debris. Similarly, we would expect the model recall – the 

ratio of Rout_Real to the sum of Rout_Real and any new landslides that occur 

outside of the modelled runout area – to also change over time, as new 

landslides occur outside of Rout_Mod. We thus assessed model performance 

using sequential precision-recall curves, which are preferable to other 

performance measures when Rout_Mod is a small fraction of the overall area 

(e.g., Saito and Rehmsmeier, 2015). We used Flow-R to calculate Rout_Mod 

using the coseismic landslide footprints (epoch 4) as the runout source areas, 

and evaluated model precision and recall up to that point in time after each 

subsequent epoch. For this portion of the analysis, we treated realisation as a 

cumulative process; that is, we considered that a cell in Rout_Mod was realised 

if it appeared as a landslide in a subsequent epoch, even if the cell was not 

mapped as a landslide in later epochs. This avoids complications caused by 

vegetation growth or obstruction of the ground surface in some but not all 

epochs (see Kincey et al., 2021). 
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To assess broader spatial variability in Rout_Mod, Ls_Map, and Rout_Real, we 

generated a set of geomorphological slope units across the study area, based on 

the methodology developed by Alvioli et al. (2016). This approach uses a digital 

elevation model to partition a landscape into individual terrain units that are 

defined by hydrological and geomorphological boundaries (Alvioli et al., 2020), 

and has been shown to be appropriate for susceptibility assessments across 

large spatial areas (Tanyas et al., 2019; Domènech et al., 2020; Jacobs et al., 

2020). The size distribution of output slope units is primarily determined by 

parameters controlling the flow accumulation thresholds and the circular 

variance in terrain aspect that is permitted within a single slope unit, which 

together define the acceptable degree of aspect homogeneity between adjacent 

units. Slope units were generated within Grass GIS v7.8.4 using the minimum 

parameter settings from the range of values recommended by Alvioli et al. 

(2016) which delimit slope units to a scale that matches observed approximate 

hillslope length scales across the study area (see Supplementary Material 5 for 

full details of slope unit parameters). Each resulting slope unit (n = 13,456) was 

attributed with a range of landslide and runout statistics for each mapping 

epoch, including: the number of landslides, the total area of landsliding, the total 

modelled runout area, and statistics summarising the maximum and summed 

runout susceptibilities (minimum, maximum, range, mean, sum, standard 

deviation). All of the topographic and environmental variables were also 

aggregated to each slope unit as tabular attributes using the same set of 

summary statistics as were used for the runout susceptibility values. 

 

2.4 Identifying locations favourable for landslide runout 
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Analysis of potential controls on runout evolution and hazard realisation focused 

on eight topographic variables that have previously been shown to influence the 

occurrence of co- and post-seismic hillslope landslides: elevation, slope, aspect, 

normalised distance to stream channel, profile and plan curvature, upslope 

contributing area, and Melton ratio (defined here as per-slope unit relief divided 

by the square root of slope unit area) (e.g., Parker et al., 2015; Robinson et al., 

2017; Kincey et al., 2021). Three event-specific variables from the Gorkha 

earthquake were also included: slope aspect relative to the epicentre, the 

Euclidean distance to the epicentral location, and the distance to the nearest 

mapped coseismic landslide. All control variables were analysed at 10 m 

resolution using the same AW3D DEM (see Supplementary Material 6 for full 

details of the potential control variables). 

The significance of each variable was assessed in two ways: by (1) comparing 

per-slope unit aggregated summary statistics of each variable (see Section 2.3) 

to corresponding modelled runout areas and realisation percentages, and (2) 

cell-by-cell differencing of kernel density estimations for all control variables at 

10 m resolution. Since the Melton ratio was calculated for each slope unit, 

analysis of this metric was conducted at this scale only. For the cell-based 

analysis, separate kernel density estimates were generated for modelled 

coseismic runout cells that became landslides in any subsequent epoch (i.e., 

Rout_Real), and for cells which did not (i.e., cells which remained in Rout_Mod 

or later became p(Rout) = 0), and these were then differenced from kernel 

density estimates based on all cells within the modelled coseismic runout extent 

(Rout_Mod). Negative density difference values indicate that the sub-population 

at that value of the control variable occurs less frequently than would be 

expected from the overall modelled runout extent, and positive values meaning 
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the sub-population at that value occurs more frequently. A full description of the 

kernel density differencing methodology is provided in Kincey et al. (2021). 

 

3. Results  

3.1 Characteristics of post-earthquake runout evolution 

Evolution of landslide area (Ls_Map) in the pre-, co-, and post-seismic phases 

was described by Kincey et al. (2021), so we provide only a brief summary here. 

The total landslide area for the three pre-earthquake epochs was consistently 

low, ranging between 60 and 64 km2, equivalent to 0.2-0.3% of the overall 

study area (Fig. 2; Supplementary Material 7). This increased substantially after 

the 2015 Gorkha earthquake, reaching 150 km2 (0.6% of the study area) for the 

coseismic inventory and 174 km2 (0.7%) for the post-monsoon 2015 inventory. 

Landslide area generally decreased through post-monsoon 2017 (epoch 9), 

when it reached a minimum value of 131 km2 (0.5%). In contrast, the period 

from pre-monsoon 2018 to post-monsoon 2019 showed an increasing trend, 

with landslide areas totalling 155 km2 (0.6%) in the final inventory of the time 

series (epoch 13). This represents the highest total since early 2016 and was 5 

km2 (~3%) greater than the equivalent coseismic landslide area.  

Overall modelled runout extents (Rout_Mod) broadly follow the same pattern as 

the mapped landslide areas (Fig. 2). Pre-seismic Rout_Mod extents ranged 

between 245 and 258 km2 (1.0-1.1% of the study area), increasing to 614 km2 

(2.5%) with the 2015 earthquake and reaching a maximum of 803 km2 (3.3%) 

for the post-monsoon 2015 inventory. Rout_Mod extents then decreased to 

post-monsoon 2017, when a minimum runout area of 680 km2 (2.8%) was 
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recorded. The area of Rout_Mod then increased to 777 km2 (3.2%) in post-

monsoon 2019, ~26% greater than the total modelled coseismic runout extent. 

Per-epoch Rout_Mod extents show a clear correlation with the equivalent per-

epoch landslide areas (Fig. 3), indicating that the size of the potential runout 

area can be broadly anticipated based on the area of visible landsliding. The 

relationship between runout area and landslide area differs, however, depending 

on whether the coseismic data are included (Fig. 3a-b). This difference is also 

apparent when the ratio of Rout_Mod area to Ls_Map area is considered (Fig. 

3c). The total Rout_Mod area for the coseismic inventory is approximately four 

times larger than the coseismic Ls_Map area, which is broadly consistent with 

the average ratio for the three pre-seismic epochs. In contrast, for post-seismic 

epochs this ratio increases, with Rout_Mod areas being on average five times 

larger than their equivalent Ls_Map areas. The magnitude of differences 

between per-epoch Rout_Mod area and Ls_Map area converge through time to a 

near-constant ratio when considered sequentially (red line on Fig. 3a). 

Modelled p(Rout) values – that is, the likelihood that a cell sits within a modelled 

runout path – show the same trend as the landslide and runout areas when 

analysed as both mean per-cell maxima and the total sum of all runout 

susceptibilities (Fig. 2). Both p(Rout) metrics increased substantially with the 

earthquake and peaked in post-monsoon 2015 (Epoch 5), before decreasing 

through post-monsoon 2017 (Epoch 9) and then increasing again to the end of 

the study period. The distribution of p(Rout) also shifted from pre- to post-

earthquake epochs (Fig. 4). Pre-earthquake values of p(Rout) were generally 

higher than coseismic values, reflecting the small number of pre-earthquake 

landslides which tended to occur in areas close to the channel network and thus 

prone to remobilisation and runout (Kincey et al., 2021). After the earthquake 
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and subsequent monsoon, there was a notable increase in low to intermediate 

values of p(Rout) (Fig. 4), which when combined with the larger extent of 

Rout_Mod indicates that a broader range of locations in the landscape became 

susceptible to runout.   

 

3.2 Post-seismic changes in modelled coseismic runout realisation 

Although runout susceptibility evolved as a result of changes to the number, 

distribution, and form of landslides in subsequent post-seismic epochs, it is still 

valuable to assess the degree to which the potential runout area modelled from 

just a coseismic landslide inventory was fulfilled in the years following the 

earthquake. This provides insights into timescales over which a runout 

assessment carried out in the immediate aftermath of an earthquake might 

remain relevant, as well as the degree to which the realisation of the modelled 

runout area varies under different model susceptibility thresholds. 

We focus initially on the modelled runout area Rout_Mod from the coseismic 

landslides (Epoch 4). When all modelled runout susceptibility values are 

included, 14% (85 km2) of Rout_Mod cells from coseismic landslides became 

Rout_Real at some point in the 4.5 years after the 2015 earthquake (Fig. 5a). In 

other words, 86% of the modelled hazard remained ‘unrealised’ by the end of 

the study. This is a highly conservative test of the runout model, as cells with 

very low susceptibilities are included. We therefore apply a moving threshold to 

progressively examine the evolution of cells with higher values of p(Rout). As 

this threshold increases, whilst the area of Rout_Mod naturally decreases, 

Rout_Real initially increases (black line on Fig. 5a), indicating increased model 

precision. This is greatest for a p(Rout) threshold of  0.6, at which 32% (10 
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km2) of all modelled coseismic runout cells (32 km2) became a landslide at some 

point during our study period. The percentage of Rout_Mod cells that were 

realised decreases marginally for higher thresholds, but this also leads to a 

pronounced decrease in the predicted runout area (Fig. 5a); for example, only 

2.5 km2 of runout is modelled if we assume a threshold of p(Rout) = 0.95. 

Inspection of precision-recall curves evaluated after each epoch shows that 

model precision generally increases over time, as expected (Fig. 5b), but at a 

decreasing rate as more of the coseismic Rout_Mod was progressively realised. 

Precision is maximised at p(Rout) values of 0.5-0.6. For all epochs, the model is 

considerably more skilled than a random classifier (Fig. 5b). Note, however, that 

maximum model recall values decrease somewhat in later epochs, likely due to 

the occurrence of new landslides that do not fall within the coseismic Rout_Mod. 

Analysis of the intersections between landslides from different epochs shows that 

90% of the total post-seismic realisation of the coseismic runout area came from 

landslides that were physically connected to the original coseismic landslide 

footprints, with only 10% originating from entirely new landslides 

(Supplementary Material 10). When evolving downslope connections between 

landslides are considered, this value increases to 92% of the realised area being 

related to pre-existing landslides and only 8% coming from entirely new 

landslides. In both cases, the proportion of realised runout that is attributable to 

pre-existing coseismic landslides decreases through time. For direct intersections 

with coseismic landslides, the values decrease from 91% in post-monsoon 2015 

(Epoch 5) to 85% in post-monsoon 2019 (Epoch 13), with the equivalent figures 

for the evolving downslope connections being 94% and 89% (Fig. S14). For all 

post-seismic epochs combined, we find that 62% of the area impacted by new 

post-seismic landslides that are directly connected to coseismic landslide 
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polygons is within the modelled runout extent, compared with 38% that is 

outside of the modelled extent (Supplementary Material 10). When analysed 

through time, we find that the proportion of newly impacted ground that is 

within the modelled runout extent increases from 61% in post-monsoon 2015 

(Epoch 5) to 65% in 2016 (Epochs 6 and 7), before decreasing to 60% by post-

monsoon 2019 (Epoch 13) (Fig. S15).  

 

3.3 Runout hazard realisation in a changing post-seismic landscape 

We next examine the realisation of Rout_Mod from all coseismic and post-

seismic epochs. Disaggregating the realised hazard data by epoch allows us to 

establish the time between when a cell is first predicted as being within a runout 

area (Rout_Mod) and when it is first intersected by a mapped landslide 

(Rout_Real), here termed the ‘realisation wait time’ (Fig. 6; Supplementary 

Material 8 and 9). For the runout area Rout_Mod modelled from the coseismic 

landslide population (epoch 4), 4.8% of Rout_Mod cells are realised after just 

one epoch (post-monsoon 2015, c. 0.5 year wait time), and a further 2.6% after 

two epochs (pre-monsoon 2016, c. 1 year) (Fig. 6a; see Fig. S12 for an 

equivalent plot in terms of the area of Rout_Real over time). The proportion of 

Rout_Mod cells that become Rout_Real in each subsequent epoch then continues 

to decrease through time, although with notable pre- and post-monsoon 

fluctuations during 2016 and 2017 in particular. Only 0.3% of the coseismic 

Rout_Mod cells are realised as landslides after nine epochs (~4.5 years). The 

spatial pattern of realisation indicates that hazard realisation occurs through 

various mechanisms, including runout via downslope channelised movement of 

sediment from a pre-existing landslide, in addition to the occurrence of new 
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landslides within the modelled coseismic runout extent (Fig. 6b). Realisation of 

Rout_Mod from landslide source areas in subsequent epochs follows a similar 

trend (Fig. 6a). 

Although the proportion of the Rout_Mod area that remains unrealised decreases 

through time (Fig. 6; Supplementary Material 8), total Rout_Mod remains high 

for all post-seismic epochs (Fig. 2). This implies that the modelled runout area is 

shifting spatially, reflecting changes to landslide footprints and the addition of 

new landslides in later epochs, meaning that the analysis of hazard realisation 

needs to also track changes occurring in individual post-seismic epochs.  

Not surprisingly, the proportion of the total Rout_Mod that eventually becomes 

Rout_Real decreases in successive epochs, from >10% (~80 km2) for post-

monsoon 2015 to 3% (~20 km2) for pre-monsoon 2019 (Fig. 7b). Whilst 

thresholding Rout_Mod at higher p(Rout) values yields a smaller runout area in 

each epoch, the overall pattern of declining realisation through time remains 

(Fig. 7a). As with realisation of runout from the coseismic landslides (Fig. 5), 

model precision for all epochs is greatest for locations with p(Rout) values  0.6 

(Fig. 7b). Maximum Rout_Real percentages generally decreased through time, 

from 32% for the coseismic epoch to just 9% for pre-monsoon 2019, at least in 

part reflecting the decrease in the number of subsequent inventories that can be 

included in the analysis of each modelled epoch. For example, after the pre-

monsoon 2019 model (epoch 12), Rout_Mod cells could only be realised in epoch 

13, compared to a total of eight subsequent inventories (~4.5 years) after the 

coseismic model (epoch 4). However, this decrease in realisation percentages is 

not monotonic, with a notable switching between pre- and post-monsoon 

positions in both 2016 and 2017 (epochs 6-9) (Figs. 6 and 7b), likely reflecting 
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seasonal variability in landslide visibility as also detected in our multi-temporal 

inventory (Kincey et al., 2021). 

 

3.4 Regional-scale spatial distribution of modelled runout 

Summarised by slope unit, coseismic landslide area is concentrated in a broad 

northwest-southeast zone (Roback et al., 2018; Kincey et al., 2021), aligned in 

particular with the physiographic divide between the Middle Hills, Middle 

Mountains and the High Himalaya (Fig. 8a). The spatial distributions of coseismic 

Rout_Mod area (Fig. 8b) and summed p(Rout) values (Fig. 8c) broadly coincide 

with that zone (Fig. 8a). The majority of slope units across the northern extent 

of the study area have a high ratio of Rout_Mod area to Ls_Map area (Fig. 8d). 

However, the central high-relief region, around Rasuwa, Nuwakot and 

Sindhupalchok districts in particular (see Fig. 1a for district names), has large 

areas of coseismic landsliding (Fig. 8a) and notably lower ratios (Fig. 8d). Ratio 

values are also markedly lower across slope units to the south of the study area, 

indicating that modelled runout from landslides in these locations was 

proportionally less extensive (Fig. 8d). 

The distribution of realised coseismic hazard, defined here as the percentage of 

coseismic Rout_Mod cells within a single slope unit that became Rout_Real in 

any post-seismic epoch, shows considerable spatial heterogeneity (Fig. 9a). 

Clusters of contiguous slope units (typically <5 connected units) with high 

Rout_Real percentages are present, but these are frequently adjacent to slope 

units with very low values, and there is little apparent spatial structure at the 

scale of our study area. The exception to this is a broad swathe of high values 

extending across Rasuwa, Nuwakot and Sindhupalchok. This again broadly 
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mirrors the zone of highest densities of coseismic landsliding (Fig. 8a), the 

highest summed p(Rout) values (Fig. 8c), and some of the lowest Rout_Mod 

area to Ls_Map area ratios (Fig. 8d). Maximum p(Rout) values per slope unit are 

only weakly correlated with the Rout_Real coseismic percentages (Fig. 9b), 

showing that runout realisation is not limited to slope units with high runout 

susceptibilities.  

 

3.5 Controls on changing post-earthquake runout characteristics 

No clear correlations are apparent at slope unit level between the topographic 

variables (Section 2.4) and the percentage values of realised coseismic hazard 

(Rout_Real), suggesting that any potential causal relationships are likely to be 

manifest below slope unit scale. In contrast, at 10 m resolution, the kernel 

density estimate differencing of these variables shows marked variation between 

Rout_Mod cells for which the hazard was realised within 4.5 years after the 

earthquake, and cells for which it was not (Fig. 10). Modelled runout cells where 

the hazard became realised preferentially occurred at elevations above 

approximately 2750 m, and in particular between 3500 and 5000 m (Fig. 10a), 

whereas at lower elevations (<2750 m) Rout_Mod was markedly less likely to be 

realised. Similarly, realised runout preferentially occurred at slope angles >35°, 

with a modal peak at 45°, but much less frequently for lower slope angles (Fig. 

10b). When analysed across a normalised hillslope profile, Rout_Mod cells were 

more likely to become Rout_Real in the middle-upper portion of the slope 

(normalised distance from hillslope toe of 0.4-0.9) than in hillslope toe locations 

(Fig. 10c). 
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Modelled runout cells were preferentially realised during the study period on 

hillslopes which are strongly curved in both profile (Fig. 10d) and plan (Fig. 

10e), as compared to planar hillslopes. For profile curvature, this occurred where 

slopes are upwardly convex with values <-0.03 m-1 and upwardly concave with 

values >0.03 m-1, while for plan curvature realised cells were preferentially on 

concave slopes where flow is convergent (<-0.025 m-1) and convex slopes where 

flow is divergent (>0.03 m-1). Upslope contributing area shows a complex 

relationship to realisation, which was most likely to occur at values between 500 

and 100,000 m2 (Fig. 10f). 

Rout_Mod cells that experienced landslides over the study period also 

preferentially occurred on slopes with aspects between approximately 90 and 

240°, representing hillslopes facing orientations between east, south and west-

southwest, with a modal peak around south-southeast (Fig. 10g). Rout_Real 

cells on more northerly-facing slopes were noticeably less common. When aspect 

is adjusted to reflect hillslope direction relative to the Gorkha earthquake 

epicentre, the distribution shows that realised runout was preferential on slopes 

facing obliquely away (90-175°), despite these hillslopes being relatively 

infrequent in the study area (Fig. 10h), and in contrast, Rout_Mod cells on 

slopes facing the epicentre generally did not become Rout_Real. Realised runout 

also preferentially occurred close to coseismic LS_map cells, especially for 

distances <50 m (Fig. 10i). Beyond this distance, Rout_Mod cells were much 

less likely to experience landslides in subsequent epochs, suggesting that 

realisation of the modelled runout extent was mainly achieved via iterative 

extension of coseismic landslides, rather than via the occurrence of entirely new 

landslides in downslope locations. 
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4. Discussion 

Post-earthquake landsliding can represent a significant secondary hazard in the 

months and years after mountain region earthquakes. A considerable portion of 

this hazard arises from the remobilisation of previously failed material, and so 

understanding the evolution of the associated runout holds the potential to 

locate, and therefore mitigate, this component of post-earthquake hazard. Our 

results provide the first regional-scale assessment of how this runout hazard 

changes in the years following a large continental earthquake, including the 

extent to which the overall potential runout area is realised and what local 

factors control the degree to which this occurs. 

 

4.1 Evolution of landslide runout following a large earthquake 

Our results demonstrate that the overall area modelled to be at risk of runout 

from mapped landslides increased considerably after the 2015 Gorkha 

earthquake. The area at risk of potential runout peaked after the 2015 monsoon, 

but importantly remained above coseismic levels through the end of the 2019 

monsoon (Fig. 2). This pattern of runout susceptibility fits with our 

understanding of the changing pattern of landslides following this earthquake, 

which suggests that the overall landslide footprint remained large through at 

least 2019 relative to coseismic levels (Kincey et al., 2021; Rosser et al., 2021). 

Our results are in contrast with those of Dahlquist and West (2019), who 

documented a rapid decline in debris-flow activity after the Gorkha earthquake 

and suggested that the transient increase in debris flow rates did not persist 

beyond 2016.  
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There are several possible reasons for the apparent differences in these two 

studies. One important consideration is that our modelling is based on all visible 

landslides in each epoch (Kincey et al., 2021), as opposed to mapping only 

newly-occurring landslides (Dahlquist and West, 2019). Since we have no data 

on sediment availability or volume, our approach makes the conservative 

assumption that any existing landslide could potentially be a source of future 

runout. The peak in runout susceptibility after the 2015 monsoon therefore 

reflects the transition from more landslides being triggered than revegetated, to 

more landslides revegetating than being triggered, rather than an actual peak in 

landslide rate. It is certain that some of the landslides that persisted as bare 

ground in post-seismic inventories will in fact have been already exhausted of 

readily mobile sediment and so will no longer pose an immediate hazard in 

terms of secondary runout. This means that our time series represents a 

precautionary scenario that will likely overestimate hazard persistence relative to 

studies that only document new or substantially-altered source areas. However, 

we know that the majority of coseismic landslide deposits remain in place on 

hillslopes for years after a large earthquake, with estimates for Wenchuan 

ranging between 80 to 90% of the initially mobilised material still being in situ 

after 6-7 years (Huang and Li, 2014; Zhang and Zhang, 2017; Fan et al., 2018; 

Dai et al., 2021; Märki et al., 2021). Even though the proportion of this material 

that is readily erodible will decrease through time (Domènech et al., 2019; Qu, 

2019; Yunus et al., 2020), longer-term studies have demonstrated that elevated 

rates of debris flows can persist for decades (Li et al., 2019; Ni et al., 2019).  

Similarly, enhanced rates of new post-seismic landsliding will persist in the years 

after a large earthquake, meaning that the source areas available for 

remobilisation will also evolve (Dadson et al., 2004; Zhang et al., 2016; Li et al., 
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2018), and that new locations will become susceptible to runout (Zhang and 

Zhang, 2017). Defining the period over which both new post-seismic landslides 

and post-seismic runout play out needs to balance the likely period over which 

the earthquake legacy remains relevant for the failure of new landslides and the 

time for the landscape to experience forcing from a full spectrum of conditions 

that drive remobilisation. Analysis of landsliding during the 2020 monsoon, 

which was recognised as intense in the area of the 2015 earthquake, suggests 

that the legacy of the Gorkha earthquake has persisted at least that long (Rosser 

et al., 2021). 

Importantly, our results also demonstrate that the overall potential runout 

extent can be estimated as a multiple of the mapped landslide area (Fig. 3), 

thereby helping to constrain the potential magnitude of the runout phase of the 

overall cascading hazard. Modelled runout areas are on average four times 

larger than equivalent landslide areas for the pre- and coseismic periods, but 

five times larger for post-seismic inventories (Figs. 2 and 3). This change in 

runout-to-source area ratio (Rout_Mod: Ls_Map) could reflect differences in the 

hillslope location and topographic characteristics of post-seismic landslides, 

which are often at higher elevations (Fan et al., 2018; Kincey et al., 2021) and 

on steeper slopes (Li et al., 2018; Yunus et al., 2020) than pre-seismic 

landslides, and so have greater potential for longer runout pathways. The 

similarity between the coseismic and pre-seismic runout-to-source ratios is likely 

the result of a combination of factors, including that coseismic landslides are 

typically larger, rounder in plan and, at least after the Gorkha earthquake, were 

less channelised than pre- or post-seismic landslides (Kincey et al., 2021). As 

post-seismic landsliding progressively shifts towards a dominance of rainfall 

triggering, the ratio between Rout_Mod area and Ls_Map area should also 
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decrease, a trend which may be occurring from post-monsoon 2016 (Epoch 7) 

onwards (Fig. 3).  

 

4.2 Realisation timescales associated with modelled runout 

susceptibility 

Our results show that 14% of all modelled coseismic runout cells, equivalent to 

85 km2, experienced a landslide at some point within the 4.5 years following the 

earthquake (Fig. 5a), and this proportion increases to 32% when the model 

output is thresholded by a susceptibility threshold that maximises the model 

precision. We find that 90% of the total runout realisation extent originates from 

changes to pre-existing coseismic landslides, and only 10% from entirely new 

landslides within the modelled runout footprint (Fig. S14). This total realisation 

area is equivalent to 57% of the total area affected by coseismic landsliding as a 

result of the 2015 Gorkha earthquake. Analysis of the rate at which coseismic 

Rout_Mod cells become Rout_Real shows a marked decrease through time, with 

4.8% of the modelled runout area experiencing a landslide within 6 months of 

the earthquake, but just 0.3% of cells taking the full 4.5 years (Fig. 6). This 

indicates that the majority of actual runout from coseismic landslides occurred in 

the immediate post-seismic period, with limited ongoing expansion of this extent 

continuing through time. These results mirror the short-lived mobilisation of 

debris flows from coseismic landslides observed by Dahlquist and West (2019) 

by post-monsoon 2015. We would expect that the rate at which new runout 

occurred from coseismic landslides will continue to decrease through time, 

perhaps as sediment supply decreases (Qu, 2019), fine material is preferentially 

removed (Domenech et al., 2019), and stabilising vegetation becomes re-

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

established (Yang et al., 2018; Shen et al., 2020). This is reflected in the 

decreasing proportion of realised runout that relates to pre-existing landslides 

versus entirely new landslides for each of the post-seismic epochs (Fig. S14). 

The unrealised per-epoch percentage of coseismic Rout_Mod cells decreased 

consistently after the earthquake, from 81% in post-monsoon 2015 to just 50% 

by post-monsoon 2019 (Table S7), while the per-epoch percentage of coseismic 

Rout_Mod cells that ceased being hazardous increased from 15% in post-

monsoon 2015 to 45% by post-monsoon 2019. This reduction in the total runout 

footprint reflects a decrease in the overall hazard from coseismic landslides 

through time. Since our results do not consider sediment supply or transport 

volumes, this decrease is solely the result of changes to Ls_Map areas over time. 

It is important to note, however, that this pattern of change is based solely on 

the coseismic landslide inventory and does not include the potentially significant 

influence of new post-seismic landsliding (Kincey et al., 2021). This explains the 

apparent paradox that, although the Rout_Mod associated with coseismic 

landslides is decreasing through time (Fig. 6; Table S7), the overall Rout_Mod 

area remains high (Fig. 2). New landslides provide an additional supply of 

sediment that can subsequently be remobilised into debris flows (Zhang and 

Zhang, 2017). Analysis of runout realisation for landslides in the post-monsoon 

2015 inventory shows that 12% (95 km2) of the modelled runout area 

experienced a landslide by the end of the time series, with this proportion 

remaining above 10% through 2016 and 9% for 2017, before decreasing rapidly 

after this date (Fig. 7). Over the same time period, 0.3% of the study area 

experienced landslides, of which 39% lay inside and 61% lay outside the 

modelled runout area, although these values include the occurrence of new 

unconnected landslides as well as runout from existing landslides. Although the 
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decreasing proportion of realisation through time in part stems from the reduced 

number of post-epoch inventories included in the analysis of later model runs in 

the time series, the trend is not simply sequential. Interestingly, although there 

is some inter-epoch variability, realisation rates for any given wait time decrease 

as the time series progresses (Fig. 6), again suggesting that runout from post-

seismic landslides occurs less frequently as more time elapses after the 

earthquake. Thus, the evolution of post-seismic runout hazard must be viewed 

as a palimpsest of overlapping susceptibilities from the inventory in each epoch, 

each decaying over time but superimposed on each other. 

One important outstanding question is the degree to which the post-seismic 

runout realisation timescale described above was determined by the timing of 

the earthquake itself. The Gorkha earthquake occurred in late April 2015, 

approximately six weeks before the start of the monsoon season and after a 6-

month period of dry weather. This meant that the earthquake occurred in 

relatively dry hillslope conditions but immediately before the onset of the 

monsoon. It has been previously suggested that the antecedent moisture 

conditions at the time of an earthquake may influence the extent of coseismic 

landsliding (Marc et al., 2018). This has also been argued as one reason why 

some moderate earthquakes are able to generate more extensive coseismic 

landsliding, as in the case of the 2018 Mw 6.6 Hokkaido earthquake, which 

occurred one day after Typhoon Jebi (Wang et al., 2019; Cui et al., 2021). Given 

this, the degree to which landslides run out in the post-seismic period is 

influenced by their behaviour and runout at the time of the earthquake; wet 

coseismic landslides may immediately run out a considerable distance, or may 

develop as slower deeper-seated landslides; dry, blocky coseismic landslide 

deposits may remain perched in the landscape, or may avalanche, running out 
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over long distances. In the case of the Gorkha earthquake, both landslide and 

runout areas peaked with the post-monsoon 2015 inventory (Fig. 2), indicating 

that the intervening monsoon significantly increased the landslide runout across 

the earthquake-affected area. The pattern of Rout_Real wait times (Fig. 6) in the 

following years shows a progressive reduction in the realisation of modelled 

runout, overlaid with a high degree of epoch-by-epoch variation. Clarifying links 

between the seasonal timing of earthquakes and the pattern of co- and post-

seismic landsliding and its runout should be a priority focus for future research. 

 

4.3 Controls on runout realisation  

When analysed at slope unit level, the spatial distribution of runout broadly 

reflects the distribution of coseismic landslides. Larger modelled runout extents 

are observed across much of the higher-relief areas to the north of the study 

area, although there is a notable region of low runout to source area ratios and 

high summed p(Rout) values coincident with the highest landslide densities, 

where the remaining hillslope area available to accommodate runout was limited 

(Fig. 8). Despite pronounced spatial heterogeneity in the distribution of realised 

coseismic runout (Fig. 9a), the percentage of realised hazard is again higher in 

those districts most badly affected by the earthquake. This indicates that slope 

units that experienced the highest densities of landsliding were also those in 

which post-seismic runout was most likely to occur, a finding that correlates with 

spatial variability in post-seismic activity after the Wenchuan earthquake (Ma et 

al., 2017; Ni et al., 2019). Whilst this may appear somewhat unsurprising, 

evidence of this tendency is important for focusing efforts within post-

earthquake geohazard assessments. No correlation is present between those 

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

cells that transition from Rout_Mod to Rout_Real and mean maximum runout 

p(Rout) values (Figs. 9b), and the lack of any clear correlations with topographic 

variables demonstrates that controls on runout are likely operating at the sub-

slope unit scale. At a finer resolution (10 m cells), our results indicate a number 

of underlying physical controls that define where in the landscape is most 

susceptible to post-failure runout (Fig. 10). This finding provides a significant 

step in the ability to anticipate locations that are more likely to experience post-

seismic runout, and therefore where cascading hazard and associated risk is 

concentrated (Zhang and Zhang, 2017; Li et al., 2018; Tian et al., 2020). 

Whilst the limited number of equivalent studies on the remobilisation of 

coseismic and post-seismic landslides restricts a wider comparison of the 

controls on runout, our findings do correlate well with broader-scale 

assessments focusing on rates of new post-seismic landsliding and the 

reactivation of coseismic landslides (e.g., Fan et al., 2018). For example, we find 

that runout associated with coseismic landslides is most likely to be realised at 

elevations >2750 m (Fig. 10a). This is to be expected given that our results are 

showing progressive (downslope) runout from existing landslides, which 

themselves typically cluster at ridge-top locations (Meunier et al., 2008). 

Nevertheless, it is known that new post-seismic landsliding also tends to occur at 

higher average elevations than preceding coseismic landsliding (Khan et al., 

2013; Fan et al., 2018; Yunus et al., 2020; Kincey et al., 2021), and so the 

distributions will also partially reflect the inclusion of entirely new landslides at 

higher elevations. Our finding that hazard realisation preferentially occurs on 

steep slope angles of >35° (Fig. 10b) is also reflected by studies focusing on 

both post-seismic debris flows (Dahlquist and West, 2019) and post-seismic 

landsliding (Li et al., 2018; Yunus et al., 2020).  
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Locations in the middle-upper portion of the hillslope profile were also found to 

be more likely to be realised than those lower down the profile, or at the ridge 

top (Fig. 10c). This at least in part reflects the spatial distribution of coseismic 

landslides, which tend to cluster towards ridge tops due to topographic 

amplification of seismic shaking (Meunier et al., 2008), and the downslope 

runout from these areas to mid-slope positions during post-seismic epochs. Mid-

slope positions are also likely to generate higher pore pressures and thicker 

overland flows, which are known debris flow triggers, as compared to ridge tops. 

This differs from patterns of new post-seismic landsliding after the Gorkha 

earthquake, which occurs more broadly across the entire hillslope profile but 

with a concentration towards lower hillslope positions (Kincey et al., 2021), 

where high pore fluid pressure is also present and undercutting of hillslopes may 

be more prevalent (Densmore and Hovius, 2000). In addition, we find that 

realisation is more likely to occur on slopes with a pronounced degree of plan or 

profile curvature, notably for either convex and concave slopes (Figs. 10d-e), 

and that realisation is most likely for cells with an upslope contributing area of 

between 40 and 15,000 m2 m-1 (Fig. 10f). Whilst inferring an underlying 

mechanism for concentrating landslides in these areas from these data alone is 

challenging, the landslide distribution may reflect a combination of flow 

accumulation within concavities, and a reduction in slope stability around 

convexities, which both reduce the local factor of safety. According to our 

observations, remobilisation and runout concentrate where there are most likely 

to be notable changes to flow characteristics (i.e., local concavities or 

convexities). Low contributing areas correspond to ridge top positions with 

limited landslide material available for remobilisation, while very high 
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contributing areas correspond to valley floors or lower portions of the channel 

network where slope may be a limiting factor in remobilisation.   

Aspect-dependent asymmetry in the distribution of landslide activity has been 

previously documented for both coseismic (Meunier et al., 2008) and post-

seismic (Fan et al., 2018; Kincey et al., 2021) landslide inventories, and here we 

show that this signal is also manifest in runout. Rout_Real is preferentially 

concentrated on hillslopes oriented between east, south and west-southwest 

(Fig. 10g), and on slopes facing away from the direction of the Gorkha epicentre 

(Fig. 10h). These distributions may reflect a superimposition of directional 

asymmetry in the hillslope damage legacy generated by seismic shaking (Brain 

et al., 2017; Robinson et al., 2017), which influences where newly-failed ground 

may occur, and the dominant direction of prevailing monsoonal rains from the 

south-southeast in this part of the Himalaya, which combined may act to amplify 

the apparent directional preference for runout seen here (Fan et al., 2018). We 

also demonstrate that Rout_Mod cells proximal to pre-existing coseismic 

landslides, notably those within 50 m, are considerably more likely to be realised 

than those further away (Fig. 10i). This finding indicates that runout is 

dominated by changes occurring over relatively short distances close to existing 

landslides, rather than more extensive runout over long distances, although the 

risk of more extensive runout should not be ignored. This pattern of activity 

concentrated near to existing landslides mirrors ideas around path dependency 

observed in other multi-temporal landslide inventories (Samia et al., 2017).  

 

4.4 Integrating runout evolution into long-term hazard and risk 

management 
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Landslide-triggering earthquakes in mountain regions can leave a concerning 

legacy of unstable slopes and extensive landslide debris, which compounds the 

risks faced by populations whose priority is reconstruction (Oven et al., 2021; 

Rieger, 2021). Any effort to understand these complex hazards, and their 

evolution in time, is therefore of value. Whilst our capacity for regional-scale 

evaluation of individual hillslope susceptibility to new landslides after an 

earthquake is currently extremely limited, a potentially knowable risk is that 

posed by runout from coseismic landslide deposits in the landscape. Such 

remobilisation commonly and tragically can lead to significant losses in the 

aftermath of large earthquakes, as has been seen in central Nepal since 2015 

(Rosser et al., 2021).  

In this research we argue that considerable gains can be made by isolating and 

characterising the risks posed by the potential for runout from coseismic and 

post-seismic landslides, as this may represent a substantial portion of total 

landslide risk faced in the aftermath of a large earthquake. The need to model 

and map these risks is also clear: the long hillslopes, confined valley topography 

and complex drainage networks that are common in central Nepal often mean 

that upslope landslide hazards may not always be recognised, particularly where 

populations may have variable degrees of awareness of the hazards in the 

landscape around them. The behaviour of post-earthquake landslides is also 

likely to sit at odds with the lived experience of residents, because earthquakes 

result in larger, more numerous, and more active landslides than may have been 

present prior to an earthquake (Oven et al., 2021; Rieger, 2021).  

We demonstrate here that a considerable area of land (85 km2) within the 

earthquake-affected area could have been recognised after the earthquake as at 

risk from runout, based upon a precautionary parameterization of Flow-R. We 
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also show that the potential hazard associated with post-seismic runout may 

have a spatial extent up to five times that of the coseismic landslide footprint 

alone, and so must be a significant factor in post-earthquake land use planning. 

Whilst only 14% of this full modelled coseismic runout extent was realised within 

the first 4.5 years, this represents a valuable demarcation of areas at risk that 

could be generated immediately after coseismic landslides have been either 

modelled (Robinson et al., 2017) or mapped (Williams et al., 2018). Importantly, 

our model was run at 10 m resolution over the full earthquake affected area, 

which is a resolution relevant to individual land holdings and buildings, allowing 

those potentially at risk to be identified.  

We also show that choices involving small distances (<50 m) can make a 

significant difference to exposure to runout of landslide debris, and so this fine-

scale information is critical for the selection of safer places for reconstruction. 

The tendency for landslide debris to channelise during runout poses a particular 

set of risks for valley bottom settlements, which commonly occupy the deposits 

of previous debris flows as these areas are often the only habitable land; 

identifying which of these areas are at greater risk where choices for 

development and reconstruction are highly limited is therefore essential. An 

important further finding of our work is that the runout hazard following a large 

earthquake changes significantly and in a complex manner through time as the 

contributing landslide sources also evolve. Identifying both where and critically 

when it is safe to rebuild is equally complex. 

We took a precautionary approach to the modelling of potential runout in this 

study, assuming that any landslide visible as bare ground in any mapping epoch 

represented a possible source of future runout material. This approach was 

justified given the absence of any meaningful data relating to sediment volumes 
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or supply across the earthquake-affected area, but it does mean that some 

source locations that were already depleted of sediment will have been included 

within the analyses. Similarly, our approach to parameterising and validating the 

model had to reflect the complexity and variability present within a landslide 

dataset that included >190,000 source locations distributed across an area of 

>24,000 km2. A useful avenue for future research would therefore be to assess 

in more detail how the ideal parameterisation of Flow-R changes through both 

space and time as the population of co- and post-seismic landslides evolves, 

including consideration of appropriate model susceptibility thresholds for 

different hazard and risk scenarios. In particular, analysing overall realisation 

and model performance once the rate of runout and landsliding has returned to 

pre-seismic levels would allow model parameters to be better refined and a less 

precautionary hazard assessment produced. Repeating such analyses for other 

multi-temporal post-seismic landslide datasets would also provide important 

information on the degree to which standard model calibration can be applied 

within different topographic and seismic contexts. 

Another important avenue for future research is linking the evolution of runout 

potential to the changes that occur in debris flow source material, mechanisms 

and initiation locations highlighted by other studies (e.g., Zhang et al., 2014; 

Zhang and Zhang, 2016; Fan et al., 2018a). Crucially, future work should also 

consider the impacts of periodic high-intensity rainfall events on determining the 

trajectory and timing of runout evolution, with the large-scale modelling 

approach presented here providing the opportunity to assess whether localised 

triggering factors can explain the spatial variability in patterns of reactivation 

and runout documented elsewhere (Tang et al., 2016; Yunus et al., 2020). 

Including rainfall data of sufficient spatial and temporal resolution as part of the 
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analysis of multi-temporal source inventories and modelling of runout pathways 

would generate invaluable information on how runout from coseismic landslides 

is likely to evolve under particular environmental conditions. Integrating such 

information into the planning framework associated with post-disaster response 

therefore has the potential to substantially improve our ability to forecast 

evolving cascading hazards and manage the associated risks. 

 

5. Conclusions 

Using a spatially-distributed empirical sediment runout model, we considered 

how the spatial extent and relative likelihood of potential runout from existing 

landslides changed in the 4.5 years following the 2015 Gorkha earthquake in 

Nepal. Our results indicate that runout from coseismic landslides represents a 

considerable component of the overall mountain hazard chain, with actual runout 

representing an area equivalent to 57% of the total area impacted by coseismic 

landsliding, and the modelled potential runout area being on average 4-5 times 

the equivalent coseismic landslide area. Although the modelled runout area from 

the coseismic landslide population decreased through time, the overall runout 

potential remained high, indicating that the runout hazard is changing as a result 

of the evolution of the post-seismic landslide distribution itself. This finding 

clearly demonstrates the importance of developing systematic multi-temporal 

landslide inventories and associated runout susceptibility assessments in the 

years after a large earthquake. 

Predicting the precise timing of runout from existing landslides remains 

problematic in the absence of high-resolution and accurate precipitation forecast 

data, an in-depth understanding of antecedent and local hillslope conditions, and 
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extensive early warning systems. However, our results demonstrate the 

possibility to anticipate the spatial extent of future runout across an entire 

earthquake-affected area and to provide indicative timescales over which the 

runout is likely to occur. A comparison of modelled runout extents with 

subsequent mapped landslides shows that 14% of all modelled coseismic runout 

cells became landslides – which we term ‘realisation’ of the hazard – at some 

point during the 4.5 years after the earthquake, equivalent to 85 km2 of newly-

affected ground. Limiting the modelled runout extent to higher susceptibility 

areas increases the model precision to 32% (10 km2), meaning that the spatial 

location of a considerable area of potential future runout risk can be identified 

immediately after an earthquake using our precautionary approach to the 

modelling of secondary hazards.  

Our analysis shows that the majority of runout realisation occurs within the first 

12 months after the earthquake, but that runout activity still persists after 4.5 

years, reflecting both a lag in the subsequent mobilisation of existing landslide 

debris and the occurrence of new landslides within modelled runout zones. Over 

the time period of our analysis, there are no clear correlations between the 

degree of hazard realisation and a range of potential factors controlling landslide 

behaviour at the level of individual geomorphological slope units. However, these 

same control factors do clearly influence the likelihood of runout realisation at 

the local (c. 10 m) scale, providing important information to help guide post-

seismic risk-sensitive land-use planning.  

Our findings enhance understanding of the extent and timing of cascading 

hazards following high magnitude earthquakes in mountain regions. Such 

regional-scale modelling of runout susceptibility from existing landslides has the 

potential to refine prediction of where, and over what timescales, future runout 
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may occur, thereby greatly improving our ability to inform how we manage long-

term post-seismic cascading hazard and risk. Embedding this knowledge within 

frameworks of disaster planning and decision-making has the potential to 

significantly improve the effectiveness of post-event recovery and 

reconstruction. 

 

References 

Aaron, J., McDougall, S. and Nolde, N., 2019. Two methodologies to calibrate 

landslide runout models. Landslides, 16(5), pp.907-920. 

Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F. 

and Guzzetti, F., 2016. Automatic delineation of geomorphological slope units 

with r. slopeunits v1. 0 and their optimization for landslide susceptibility 

modeling. Geoscientific Model Development, 9(11), pp.3975-3991. 

Alvioli, M., Guzzetti, F. and Marchesini, I., 2020. Parameter-free delineation of 

slope units and terrain subdivision of Italy. Geomorphology, 358, p.107124. 

Blahut, J., Horton, P., Sterlacchini, S. and Jaboyedoff, M., 2010. Debris flow 

hazard modelling on medium scale: Valtellina di Tirano, Italy. Natural Hazards 

and Earth System Sciences, 10(11), pp.2379-2390. 

Blais-Stevens, A. and Behnia, P., 2016. Debris flow susceptibility mapping using 

a qualitative heuristic method and Flow-R along the Yukon Alaska Highway 

Corridor, Canada. Natural Hazards and Earth System Sciences, 16(2), pp.449-

462. 

Brain, M.J., Rosser, N.J. and Tunstall, N., 2017. The control of earthquake 

sequences on hillslope stability. Geophysical Research Letters, 44(2), pp.865-

872. 

Claessens, L., Heuvelink, G.B.M., Schoorl, J.M. and Veldkamp, A., 2005. DEM 

resolution effects on shallow landslide hazard and soil redistribution 

modelling. Earth Surface Processes and Landforms, 30(4), pp.461-477. 

Cui, Y., Bao, P., Xu, C., Ma, S., Zheng, J. and Fu, G., 2021. Landslides triggered 

by the 6 September 2018 Mw 6.6 Hokkaido, Japan: an updated inventory and 

retrospective hazard assessment. Earth Science Informatics, 14(1), pp.247-258. 

Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., 

Horng, M.J., Chen, T.C., Milliman, J. and Stark, C.P., 2004. Earthquake-triggered 

increase in sediment delivery from an active mountain belt. Geology, 32(8), 

pp.733-736. 

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

Dahlquist, M.P. and West, A.J., 2019. Initiation and runout of post‐seismic debris 

flows: Insights from the 2015 Gorkha Earthquake. Geophysical Research 

Letters, 46(16), pp.9658-9668. 

Dai, L., Scaringi, G., Fan, X., Yunus, A.P., Liu‐Zeng, J., Xu, Q. and Huang, R., 

Coseismic debris remains in the orogen despite a decade of enhanced 

landsliding. Geophysical Research Letters, p.e2021GL095850. 

Densmore, A.L. and Hovius, N., 2000. Topographic fingerprints of bedrock 

landslides. Geology, 38(4), pp.371-374. 

Domènech, G., Fan, X., Scaringi, G., van Asch, T.W., Xu, Q., Huang, R. and 

Hales, T.C., 2019. Modelling the role of material depletion, grain coarsening and 

revegetation in debris flow occurrences after the 2008 Wenchuan 

earthquake. Engineering Geology, 250, pp.34-44. 

Domènech, G., Alvioli, M. and Corominas, J., 2020. Preparing first-time slope 

failures hazard maps: from pixel-based to slope unit-based. Landslides, 17(2), 

pp.249-265. 

Fan, L., Lehmann, P., McArdell, B. and Or, D., 2017. Linking rainfall-induced 

landslides with debris flows runout patterns towards catchment scale hazard 

assessment. Geomorphology, 280, pp.1-15. 

Fan, R.L., Zhang, L.M., Wang, H.J. and Fan, X.M., 2018a. Evolution of debris 

flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan 

earthquake. Engineering Geology, 235, pp.1-10. 

Fan, X., Domènech, G., Scaringi, G., Huang, R., Xu, Q., Hales, T.C., Dai, L., 

Yang, Q. and Francis, O., 2018b. Spatio-temporal evolution of mass wasting 

after the 2008 M w 7.9 Wenchuan earthquake revealed by a detailed multi-

temporal inventory. Landslides, 15(12), pp.2325-2341. 

Fan, X., Scaringi, G., Korup, O., West, A.J., van Westen, C.J., Tanyas, H., 

Hovius, N., Hales, T.C., Jibson, R.W., Allstadt, K.E. and Zhang, L., 2019. 

Earthquake‐induced chains of geologic hazards: Patterns, mechanisms, and 

impacts. Reviews of Geophysics, 57(2), pp.421-503. 

Fischer, L., Rubensdotter, L., Sletten, K., Stalsberg, K., Melchiorre, C., Horton, 

P., and Jaboyedoff, M. 2012. Debris flow modeling for susceptibility mapping at 

regional to national scale in Norway, Proceedings of the 11th International and 

2nd North American Symposium on Landslides, 3–8 June 2012, Banff, Alberta, 

Canada, 2012. 

Holmgren, P., 1994. Multiple flow direction algorithms for runoff modelling in 

grid based elevation models: an empirical evaluation. Hydrological 

processes, 8(4), pp.327-334. 

Horton, P., Jaboyedoff, M., and Bardou, E., 2008. Debris flow susceptibility 

mapping at a regional scale, in: Proceedings of the 4th Canadian Conference on 

Geohazards, edited by: Locat, J., Perret, D., Turmel, D., Demers, D., and 

Leroueil, S., Quebec, Canada, 20–24 May 2008, 339–406, 2008. 

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

Horton, P., Loye, A., and Jaboyedoff, M., 2009. Debris Flows and Avalanches 

Susceptibility Hazard Mapping for Pakistan – Modelling of the two pilot districts 

Muzaffarabad and Manshera, Technical report, Faculty of Geosciences and 

Environment, Institute of Geomatics and Risk Analysis, University of Lausanne, 

Switzerland, 2009. 

Horton, P., Jaboyedoff, M., Rudaz, B.E.A. and Zimmermann, M., 2013. Flow-R, a 

model for susceptibility mapping of debris flows and other gravitational hazards 

at a regional scale. Natural hazards and earth system sciences, 13(4), pp.869-

885. 

Huang, R. and Li, W., 2014. Post-earthquake landsliding and long-term impacts 

in the Wenchuan earthquake area, China. Engineering Geology, 182, pp.111-

120. 

Jaboyedoff, M., Choffet, Ch., Derron, M.-H., Horton, P., Loye, A., Longchamp, C., 

Mazotti, B., Michoud, C., and Pedrazzini, A., 2012. Preliminary Slope Mass 

Movements Susceptibility Mapping Using DEM and LiDAR DEM, in: Terrigenous 

Mass Movements: Detection, Modelling, Early Warning and Mitigation Using 

Geoinformation Technology, edited by: Pradhan, B. and Buchroithner, M., 

Springer-Verlag, Berlin Heidelberg, Germany, 109–170. 

Jacobs, L., Kervyn, M., Reichenbach, P., Rossi, M., Marchesini, I., Alvioli, M. and 

Dewitte, O., 2020. Regional susceptibility assessments with heterogeneous 

landslide information: Slope unit-vs. pixel-based 

approach. Geomorphology, 356, p.107084. 

Kappes, M.S., Malet, J.P., Remaître, A., Horton, P., Jaboyedoff, M. and Bell, R., 

2011. Assessment of debris-flow susceptibility at medium-scale in the 

Barcelonnette Basin, France. Natural Hazards and Earth System Sciences, 11(2), 

pp.627-641. 

Kappes, M.S., Gruber, K., Frigerio, S., Bell, R., Keiler, M. and Glade, T., 2012. 

The MultiRISK platform: The technical concept and application of a regional-scale 

multihazard exposure analysis tool. Geomorphology, 151, pp.139-155. 

Khan, S.F., Kamp, U. and Owen, L.A., 2013. Documenting five years of 

landsliding after the 2005 Kashmir earthquake, using repeat photography. 

Geomorphology, 197, pp.45-55. 

Kincey, M. E., Rosser, N. J., Robinson, T. R., Densmore, A. L., Shrestha, R., 

Pujara, D. S., et al. (2021). Evolution of coseismic and post‐seismic landsliding 

after the 2015 Mw 7.8 Gorkha earthquake, Nepal. Journal of Geophysical 

Research: Earth Surface, 126.  

Li, G., West, A.J., Densmore, A.L., Hammond, D.E., Jin, Z., Zhang, F., Wang, J. 

and Hilton, R.G., 2016. Connectivity of earthquake‐triggered landslides with the 

fluvial network: Implications for landslide sediment transport after the 2008 

Wenchuan earthquake. Journal of Geophysical Research: Earth Surface, 121(4), 

pp.703-724. 

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

Li, C., Wang, M. and Liu, K., 2018. A decadal evolution of landslides and debris 

flows after the Wenchuan earthquake. Geomorphology, 323, pp.1-12. 

Losasso, L., Derron, M.-H., Horton, P., Jaboyedoff, M., & Sdao, F. (2016). 

Definition and mapping of potential rockfall source and propagation areas at a 

regional scale in Basilicata region (Southern Italy). Rendiconti Online Della 

Società Geologica Italiana, 41, 175–178. 

Ma, C., Wang, Y., Hu, K., Du, C. and Yang, W., 2017. Rainfall intensity–duration 

threshold and erosion competence of debris flows in four areas affected by the 

2008 Wenchuan earthquake. Geomorphology, 282, pp.85-95. 

Marc, O., Hovius, N., Meunier, P., Uchida, T. and Hayashi, S., 2015. Transient 

changes of landslide rates after earthquakes. Geology, 43(10), pp.883-886. 

Marc, O., Stumpf, A., Malet, J.P., Gosset, M., Uchida, T. and Chiang, S.H., 2018. 

Initial insights from a global database of rainfall-induced landslide inventories: 

The weak influence of slope and strong influence of total storm rainfall. Earth 

Surface Dynamics, 6(4), pp.903-922. 

Marc, O., Behling, R., Andermann, C., Turowski, J.M., Illien, L., Roessner, S. and 

Hovius, N., 2019. Long-term erosion of the Nepal Himalayas by bedrock 

landsliding: the role of monsoons, earthquakes and giant landslides. Earth 

Surface Dynamics, 7(1), pp.107-128. 

Märki, L., Lupker, M., France-Lanord, C., Lavé, J., Gallen, S., Gajurel, A.P., 

Haghipour, N., Leuenberger-West, F. and Eglinton, T., 2021. An unshakable 

carbon budget for the Himalaya. Nature Geoscience, pp.1-6. 

Melo, R. and Zêzere, J.L., 2017. Modeling debris flow initiation and run-out in 

recently burned areas using data-driven methods. Natural hazards, 88(3), 

pp.1373-1407. 

Meunier, P., Hovius, N. and Haines, J.A., 2008. Topographic site effects and the 

location of earthquake induced landslides. Earth and Planetary Science Letters, 

275(3-4), pp.221-232. 

Michoud, C., Derron, M.H., Horton, P., Jaboyedoff, M., Baillifard, F.J., Loye, A., 

Nicolet, P., Pedrazzini, A. and Queyrel, A., 2012. Rockfall hazard and risk 

assessments along roads at a regional scale: example in Swiss Alps. Natural 

Hazards and Earth System Sciences, 12(3), pp.615-629. 

Ni, Z., Yang, Z., Li, W., Zhao, Y. and He, Z., 2019. Decreasing trend of 

geohazards induced by the 2008 Wenchuan earthquake inferred from time series 

NDVI data. Remote Sensing, 11(19), p.2192-2222. 

Oppikofer, T., Hermanns, R., Sandøy, G., Böhme, M., Jaboyedoff, M., Horton, P., 

et al. (2016). Quantification of casualties from potential rock-slope failures in 

Norway. Landslides and Engineered Slopes. Experience, Theory and Practice, 

(June), 1537–1544. 41, 175–178. 

Oven, K.J., Rana, S., Rosser, N.J., Basyal, G.K. and Kincey, M. (2021) Governing 

landslide risk in post-earthquake Nepal: Reflections on policy, politics and the 

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

meaning of place. In Hutt, M. et al. (Eds.) Epicentre to Aftermath: Rebuilding 

and Remembering in the Wake of Nepal’s Earthquakes. Delhi: Cambridge 

University Press. 

Parker, R.N., Hancox, G.T., Petley, D.N., Massey, C.I., Densmore, A.L. and 

Rosser, N.J., 2015. Spatial distributions of earthquake-induced landslides and 

hillslope preconditioning in the northwest South Island, New Zealand. Earth 

Surface Dynamics, 3(4), pp.501-525. 

Pastorello, R., Michelini, T. and d’Agostino, V., 2017. On the criteria to create a 

susceptibility map to debris flow at a regional scale using Flow-R. Journal of 

Mountain Science, 14(4), pp.621-635. 

Paudel, B., Fall, M. and Daneshfar, B., 2020. GIS-based assessment of debris 

flow hazards in Kulekhani Watershed, Nepal. Natural Hazards, pp.1-30. 

Pearce, A.J. and Watson, A.J., 1986. Effects of earthquake-induced landslides on 

sediment budget and transport over a 50-yr period. Geology, 14(1), pp.52-55. 

Qu, Y., 2019. Study on transformation rate of sources to debris flows in 

meizoseismal area. Quaternary International, 503, pp.51-58. 

Rieger, K., 2021. Multi-hazards, displaced people's vulnerability and 

resettlement: Post-earthquake experiences from Rasuwa district in Nepal and 

their connections to policy loopholes and reconstruction practices. Progress in 

Disaster Science, 11, p.100187. 

Roback, K., Clark, M.K., West, A.J., Zekkos, D., Li, G., Gallen, S.F., Chamlagain, 

D. and Godt, J.W., 2018. The size, distribution, and mobility of landslides caused 

by the 2015 Mw7. 8 Gorkha earthquake, Nepal. Geomorphology, 301, pp.121-

138. 

Robinson, T.R. and Davies, T.R.H., 2013. Potential geomorphic consequences of 

a future great (M w= 8.0+) Alpine Fault earthquake, South Island, New 

Zealand. Natural Hazards and Earth System Sciences, 13(9), pp.2279-2299. 

Robinson, T.R., Rosser, N.J., Densmore, A.L., Williams, J.G., Kincey, M.E., 

Benjamin, J. and Bell, H.J., 2017. Rapid post-earthquake modelling of coseismic 

landslide intensity and distribution for emergency response decision 

support. Natural Hazards and Earth System Sciences, 17(9), pp.1521-1540. 

Rosser, N., Kincey, M., Oven, K., Densmore, A., Robinson, T., Pujara, D.S., 

Shrestha, R., Smutny, J., Gurung, K., Lama, S. and Dhital, M.R., 2021. Changing 

significance of landslide Hazard and risk after the 2015 Mw 7.8 Gorkha, Nepal 

earthquake. Progress in Disaster Science, p.100159. 

Samia, J., Temme, A., Bregt, A., Wallinga, J., Guzzetti, F., Ardizzone, F. and 

Rossi, M., 2017. Do landslides follow landslides? Insights in path dependency 

from a multi-temporal landslide inventory. Landslides, 14(2), pp.547-558. 

Saito, T., and Rehmsmeier, M., 2015. The precision-recall plot is more 

informative than the ROC plot when evaluating binary classifiers on imbalanced 

datasets. PloS One, 10, doi:10.1371/journal.pone.0118432. 

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

Shen, P., Zhang, L.M., Fan, R.L., Zhu, H. and Zhang, S., 2020. Declining 

geohazard activity with vegetation recovery during first ten years after the 2008 

Wenchuan earthquake. Geomorphology, 352, p.106989. 

Tanyas, H., Rossi, M., Alvioli, M., van Westen, C.J. and Marchesini, I., 2019. A 

global slope unit-based method for the near real-time prediction of earthquake-

induced landslides. Geomorphology, 327, pp.126-146. 

Tian, Y., Owen, L.A., Xu, C., Ma, S., Li, K., Xu, X., Figueiredo, P.M., Kang, W., 

Guo, P., Wang, S. and Liang, X., 2020. Landslide development within 3 years 

after the 2015 M w 7.8 Gorkha earthquake, Nepal. Landslides, pp.1-17. 

von Ruette, J., Lehmann, P. and Or, D., 2016. Linking rainfall-induced landslides 

with predictions of debris flow runout distances. Landslides, 13(5), pp.1097-

1107. 

Wang, F., Fan, X., Yunus, A.P., Subramanian, S.S., Alonso-Rodriguez, A., Dai, 

L., Xu, Q. and Huang, R., 2019. Coseismic landslides triggered by the 2018 

Hokkaido, Japan (M w 6.6), earthquake: spatial distribution, controlling factors, 

and possible failure mechanism. Landslides, 16(8), pp.1551-1566. 

Williams, J.G., Rosser, N.J., Kincey, M.E., Benjamin, J., Oven, K.J., Densmore, 

A.L., Milledge, D.G., Robinson, T.R., Jordan, C.A. and Dijkstra, T.A., 2018. 

Satellite-based emergency mapping using optical imagery: experience and 

reflections from the 2015 Nepal earthquakes. Natural hazards and earth system 

sciences, 18(1), pp.185-205. 

Yang, W., Qi, W., Wang, M., Zhang, J. and Zhang, Y., 2017. Spatial and 

temporal analyses of post-seismic landslide changes near the epicentre of the 

Wenchuan earthquake. Geomorphology, 276, pp.8-15. 

Yang, W., Qi, W. and Zhou, J., 2018. Decreased post-seismic landslides linked to 

vegetation recovery after the 2008 Wenchuan earthquake. Ecological Indicators, 

89, pp.438-444. 

Yunus, A.P., Fan, X., Tang, X., Jie, D., Xu, Q. and Huang, R., 2020. Decadal 

vegetation succession from MODIS reveals the spatio-temporal evolution of 

post-seismic landsliding after the 2008 Wenchuan earthquake. Remote Sensing 

of Environment, 236, p.111476. 

Zhang, S., Zhang, L., Lacasse, S. and Nadim, F., 2016. Evolution of mass 

movements near epicentre of Wenchuan earthquake, the first eight years. 

Scientific Reports, 6(1), pp.1-9. 

Zhang, S. and Zhang, L.M., 2017. Impact of the 2008 Wenchuan earthquake in 

China on subsequent long-term debris flow activities in the epicentral 

area. Geomorphology, 276, pp.86-103. 

  

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

 

Figure 1. (a) Location of study area showing the coseismic landslide distribution 

(epoch 4) in red. (b) Extract from the runout model (Rout_Mod) results showing 

maximum runout susceptibility (p(Rout)) from coseismic sources (Ls_Map; 

shown in red) (AW3D 5 m DEM ©JAXA, RESTEC and NTTDATA). 
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Figure 2. Time series of total landslide area (Ls_Map), runout area (Rout_Mod), 

and runout susceptibilities (p(Rout)) for the overall study area. Vertical blue bars 

show the timing of the monsoon; dashed vertical black lines indicate the dates of 

the 25 April Mw 7.8 Gorkha earthquake and the 12 May Mw 7.3 aftershock.  

Modified from Kincey et al. (2021) and Rosser et al. (2021). 
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Figure 3. (a) Correlation between per-epoch landslide (Ls_Map) area and 

modelled runout (Rout_Mod) area. Separate trend lines fitted for (1) epochs 4-

13, dashed, and (2) epochs 5-13, dotted, with regression lines both forced 

through the origin. The red line connects the epochs sequentially by date to 

indicate changes through time. Panel (b) shows the same data but including the 

three pre-earthquake epochs 1-3. (c) Ratio of modelled runout (Rout_Mod) area 

to landslide (Ls_Map) area through time. Higher values indicate greater runout 

extent relative to the landslide sources. Vertical black dashed line indicates the 

time of the earthquake (epoch 4). 
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Figure 4. Kernel density estimates of the distributions of (a) maximum per-cell 

runout susceptibility (p(Rout) max) and (b) the per-cell sum of all runout 

susceptibilities (p(Rout) sum), expressed as the difference between each 

distribution and the coseismic distribution in epoch 4 (black line). Positive values 

represent a greater number of cells with corresponding value of p(Rout), 

negative value represent a smaller number of cells relative to epoch 4. 
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Figure 5. (a) Area of modelled coseismic runout (Rout_Mod; blue) and area of 

modelled coseismic runout that was realised by landslide occurrence within any 

post-EQ epoch (Rout_Real; red), as a function of modelled susceptibility p(Rout) 

threshold. The black line shows the model precision, defined as the realised 

runout area (Rout_Real) as a fraction of the total coseismic runout area 

(Rout_Mod), again as a function of susceptibility (p(Rout) threshold. The 

maximum model precision occurs at a p(Rout) threshold of 0.6. Black dot on the 

y-axis indicates that 14% of all coseismic Rout_Mod was realised by the end of 

the study. (b) Precision-recall curves for each of the post-seismic epochs, based 

on modelling of runout from coseismic (epoch 4) landslides and comparison with 

subsequent mapped landslide inventories (epochs 5-13). Each curve is 

calculated based on the cumulative extent of post-seismic landsliding that 

occurred up until that epoch. Black dots along the curve represent the 

susceptibility thresholds, increasing in 0.05 intervals from zero. Horizontal 

dashed lines towards the base of the y-axis show the no skill values for a 

random classifier from each epoch; note that the precision depends upon the 

number of positive values, and so varies between epochs. 
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Figure 6. (a) Distribution of runout realisation wait times for all co- and post-

seismic epochs. Realisation wait times are defined here as the time between 

when a cell is first included within a modelled runout area for a given epoch 

(Rout_Mod), and when it first intersected a mapped landslide polygon 

(Rout_Real). Note that longer wait times can only be determined for the earlier 

epochs due to the brevity of our inventory data. (b) Map showing an example of 

per-cell realisation wait times associated with the modelled coseismic runout for 

an area of Dolakha district. The spatial extent of this map is shown on Fig. 1 for 

reference. 

  

 10969837, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 

This article is protected by copyright. All rights reserved. 

 

Figure 7. (a) Extent of modelled runout in each of the mapping epochs that was 

realised by landslide occurrence within any subsequent epoch (Rout_Real), 

differentiated by susceptibility (p(Rout)) threshold. Note: the realisation area 

data on the y-axis are stacked. (b) Model precision by epoch, defined as the 

realised runout area (Rout_Real) as a fraction of the total coseismic runout area 

(Rout_Mod), again differentiated by susceptibility (p(Rout)) threshold. For all 

epochs, the model achieves maximum precision at a p(Rout) threshold of 0.55-

0.65; these points are connected for reference to show their evolution in time for 

both pre- and post-monsoon inventories. Coloured dots on the y-axis indicate 

the proportion of all Rout_Mod that was realised by the end of the study for each 

mapping epoch. 
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Figure 8. Spatial distribution of key runout metrics aggregated by individual 

slope unit. (a), total coseismic landslide (Ls_Map) area; (b), total modelled 

coseismic runout (Rout_Mod) area; (c), summed susceptibilities (p(Rout)) of 

coseismic runout; (d), ratio of coseismic runout area to landslide area 

(Rout_Mod:Ls_Map). Dashed black lines represent the major physiographic 

boundaries within the study area. 
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Figure 9. (a) Realised coseismic runout (Rout_Real) plotted by individual slope 

unit. Values indicate the percentage of cells in each slope unit that were 

modelled as part of the coseismic runout area (Rout_Mod), and were then 

occupied by a landslide in any post-seismic epoch (Ls_Map). (b) Scatter plot of 

per-slope unit realised coseismic runout (Rout_Real) (%) against the mean of all 

maximum runout susceptibility (p(Rout)) values within each corresponding slope 

unit. Note: data are only plotted for slope units that include runout cells. 
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Figure 10. Kernel density distributions of all modelled coseismic runout cells 

(Rout_Mod) for selected topographic, seismic and distance-based variables. 

Differences in kernel density values relative to the overall distribution are shown 

for those cells where the coseismic runout hazard was later realised (Rout_Real; 

red) and for those where it was not (Rout_Mod ≠ Ls_Map; blue). Shaded areas 

show distributions of each variable for all coseismic runout cells (Rout_Mod) 

within the study area for reference. 
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Graphical abstract 

 

Coseismic landslides represent the first stage of a broader cascading sequence of 

geohazards associated with high-magnitude earthquakes, with the subsequent 

(re)mobilisation of landslide debris posing a long-term post-seismic legacy in 

mountain regions. Here, we quantify the controls on landslide remobilisation and 

runout, as well as the overlap between areas that are at risk of runout and the 

actual pattern of post-seismic landslides and debris flows. Our findings are 

particularly important for informing decision-making associated with post-

seismic recovery and reconstruction. 
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