38 research outputs found

    A Mathematical Hydrodynamic Circulation Model of Great Salt Lake for Resource Management

    Get PDF
    In the Great Basin region of this country, the resource which has always been of great importance is water. In Utah, the proper management of the resources of Great Salt Lake and the watersheds tributary to it, has become a topic of increasing concern. Recently, much emphasis has been placed on developing the recreational and industrial resources of Great Salt Lake. For optimum economic and social benefits from future development plans, the lake and its tributary watersheds need to be considered in terms of a single entity. In this regard, the Utah Water Research Laboratory (UWRL) has conducted several studies which involve hydrologic basins tributary to Great Salt Lake. Significantly lacking, however, was a comprehensive study of Great Salt Lake itself. The reserach reported herein is directed towards the development of a comprehensive predictive hydrodynamic model of Great Salt Lake (see Figure 1). This model provides two general types of information. First, it provides circulation patterns within the lake for configurations and conditions imposed by the planner. This information is necessary to predict movement of pollutants, paths of freshwater inflows, and other phenomena which depend on currents. Second, the model provides information on the distribution of salinity throughout the lake. This informatino is vital to the industries around the lake which extract minerals from the brines of the lake. These capabilities of the model will also be valuable in providing data to be used by quality models. It could be argued that because of a lack of field data for model verification, the development of a mathematical model was premature. Some field data on salinity are being collected regularly and the data base is steadily growing. Hopefully, the Utah Separtment of Natural Resources will implement a program of measuring velocities and circulation patterns to provide a data base for calibrating the hydraulic model. In any case, the initial development of a mathematical model is appropriate so that over the next few years, it can be improved and adjusted as more data become available. It seemed unwise to wait for a complete data base before launching a lengthy program of development of a mathematical model. The objectives of the research were as follows: 1. To develop new mathematical models or incorporate existing models of the flow through the Southern Pacific causeway embankment and culverts to act as boundary conditions in mathementical circulation models of the southern and northern arms of the Great Salt Lake. 2. To develop an upper-layer hydrodynamic circulation model of Great Salt Lake. As a first step toward developing a more comprehensive two-layer model, it was recognized that the main function of the lower layer within the lake may be to act as a reservoir for passing salinity from the north arm to the surface layer in the south arm. If this is indeed the case, then an upper-layer model could be constucted based on the assumption that the interface is a horizontal boundary which feeds salinity itno the upper layer in some reasonable fashion to maintain continuity. 3. To attempt to develop a coupled two-layer model of Great Salt Lake. It was proposed to use the finite element technique to generate a hydrodynamic model of the circulation patterns in both the upper and lower layers. The finite element representation incorporates cubic velocity variations in the two layers to more accurately simulate the recircualtion flow patterns caused by wind action on the surface and fresh water flow from the contributing streams. 4. To perform a laboratory experiment devised to evaluate the rate of salinity exchange from the lower high-density layer through the interfacial shear zone into the upper layer. It was believed that the exchange of salinity between the two layers is a direct function of the intensity of the interfacial shear and the resulting turbulent mixing at the interface. 5. To attempt to adjust the model to Great Salt Lake. All available velocity and salinity concentration data collected by the United States Geological Survey (USGS) and the Utah Geological and Mineral Survey (UGMS) during recent years was used. 6. To cooperate with researchers who are studying other aspects of the lake by making the mathematical model available to them. A modeling appraoch utilizing equations based on the fundamental laws of physics, coupled with the application of the versatile finite element method gives the hydrodynamic and convetion-dispersion models of Great Salt Lake the versatility required to examine the spectrum of management alternatives. The predictive capability is greatly enhanced in this approach by minimizing the number of empirical constants to be evlatued. It seems clear that the development of these comprehensive models of the lake is a necessary step in the subsequent development and use of both water quality and management models of this important natural resource

    Perceptions of Gender Disparities in Access to Surgical Care in Malawi: A Community Based Survey

    Get PDF
    Background Gender disparities in surgical care exist but have been minimally studied, particularly in low- and middle-income countries. This study explored perceptions and gender differences in health-seeking behavior and attitudes toward surgical care in Malawi among community members.MethodsA survey tool was administered to adults ≄18 years old at a central hospital, district hospital, and two marketplaces in Malawi from June 2018 to December 2018. Responses from men and women were compared using chi-squared tests. Results Four hundred eighty-five adults participated in the survey, 244 (50.3%) men and 241 (49.7%) women. Women were more likely to state that fear of surgery might prevent them from seeking surgical care (29.1% of men, 43.6% of women, P = .0009). Both genders reported long wait times, medicine/physician shortages, and lack of information about when surgery is needed as potential barriers to seeking surgical care. More men stated that medical preference should be given to sons (17.1% of men, 9.3% of women, P = .01). Men were more likely to report that men should have the final word about household decisions (28.7% of men vs 19.5% of women, P < .0001) and were more likely to spend money independently (68.7% of married men, 37.5% of married women, P < .0001). Few participants reported believing gender equality had been achieved (61% of men and 66.8% of women). Conclusions A multi-pronged approach is needed to reduce gender disparities in surgical care in Malawi, including addressing paternalistic societal norms, education, and improving health infrastructure

    Outcomes and prognostic factors for women with breast cancer in Malawi

    Get PDF
    Background: Breast cancer incidence in sub-Saharan Africa (SSA) is increasing, and SSA has the highest age-standardized breast cancer mortality rate worldwide. However, high-quality breast cancer data are limited in SSA. Materials and Methods: We examined breast cancer patient and tumor characteristics among women in Lilongwe, Malawi and evaluated risk factor associations with patient outcomes. We consecutively enrolled 100 women ≄ 18 years with newly diagnosed, pathologically confirmed breast cancer into a prospective longitudinal cohort with systematically assessed demographic data, HIV status, and clinical characteristics. Tumor subtypes were further determined by immunohistochemistry, overall survival (OS) was estimated using Kaplan–Meier methods, and hazards ratios (HR) were calculated by Cox proportional hazard analyses. Results: Of the 100 participants, median age was 49 years, 19 were HIV-positive, and 75 presented with late stage (III/IV) disease. HER2-enriched and triple-negative/basal-like subtypes represented 17% and 25% tumors, respectively. One-year OS for the cohort was 74% (95% CI 62–83%). Multivariable analyses revealed mortality was associated with HIV (HR, 5.15; 95% CI 1.58–16.76; p = 0.006), stage IV disease (HR, 8.86; 95% CI 1.07–73.25; p = 0.043), and HER2-enriched (HR, 7.46; 95% CI 1.21–46.07; p = 0.031), and triple-negative subtypes (HR, 7.80; 95% CI 1.39–43.69; p = 0.020). Conclusion: Late stage presentation, HER2-enriched and triple-negative subtypes, and HIV coinfection were overrepresented in our cohort relative to resource-rich settings and were associated with mortality. These findings highlight robust opportunities for population- and patient-level interventions across the entire cascade of care to improve breast cancer outcomes in low-income countries in SSA

    Effective monitoring of freshwater fish

    Get PDF
    Freshwater ecosystems constitute only a small fraction of the planet’s water resources, yet support much of its diversity, with freshwater fish accounting for more species than birds, mammals, amphibians, or reptiles. Fresh waters are, however, particularly vulnerable to anthropogenic impacts, including habitat loss, climate and land use change, nutrient enrichment, and biological invasions. This environmental degradation, combined with unprecedented rates of biodiversity change, highlights the importance of robust and replicable programmes to monitor freshwater fish assemblages. Such monitoring programmes can have diverse aims, including confirming the presence of a single species (e.g. early detection of alien species), tracking changes in the abundance of threatened species, or documenting long-term temporal changes in entire communities. Irrespective of their motivation, monitoring programmes are only fit for purpose if they have clearly articulated aims and collect data that can meet those aims. This review, therefore, highlights the importance of identifying the key aims in monitoring programmes, and outlines the different methods of sampling freshwater fish that can be used to meet these aims. We emphasise that investigators must address issues around sampling design, statistical power, species’ detectability, taxonomy, and ethics in their monitoring programmes. Additionally, programmes must ensure that high-quality monitoring data are properly curated and deposited in repositories that will endure. Through fostering improved practice in freshwater fish monitoring, this review aims to help programmes improve understanding of the processes that shape the Earth's freshwater ecosystems, and help protect these systems in face of rapid environmental change

    POLYACRYLAMIDE FOR SURFACE IRRIGATION TO INCREASE NUTRIENT-USE EFFICIENCY AND PROTECTWATER QUALITY

    Get PDF
    Furrow irrigation systems have a greater application capacity, are less costly, and use less energy than sprinkler systems but furrow irrigation produces greater runoff, erosion, and deep percolation losses. Phosphorus (P) and nitrogen (N) losses are associated with runoff sediment, and can be minimized by eliminating irrigationinduced erosion. Excessive leaching of inorganic and organic solutes commonly occurs at the inflow region of furrow irrigated fields where infiltration opportunity times are longer. In one conservation practice, a high molecular weight, anionic polyacrylamide (PAM) is applied to advancing furrow stream flows at a concentration of 10 mg L-1. Because PAM stabilizes furrow soil and flocculates suspended sediment, we hypothesized that this treatment would reduce runoff losses of sediment, molybdate reactive P (MRP), total P, NO3-N, and chemical oxygen demand (COD). Polyacrylamide treatment may increase furrow infiltration in some soils. However, we hypothesized that because it permits higher initial inflows, PAM would not increase NO3-N or Cl leaching relative to conventional, constant inflow irrigation. To test the first hypothesis, all treatments had the same inflow regime. For hypothesis two, control inflows were a constant 15 L min-1; PAM treated inflows were cut back from 45 to 15 L min-1 after furrow advance. Irrigation runoff and percolation waters were sampled and analyzed. Polyacrylamide increased infiltration and decreased runoff, particularly early in the irrigations. Mean cumulative runoff sediment loss over 12 h was 11.86 kg for each control furrow vs 1.15 kg for PAM-treated furrows. The PAM reduced 12-h cumulative sediment losses in runoff by 90%, MRP by 87%, total P by 92%, and COD by 85%, relative to control furrows. Polyacrylamide had no field-wide, season-long effect on cumulative amounts of water, NO3-N or Cl leached. The PAM-technology effectively prevented soil nutrient losses, increased nutrient-use efficiency, and decreased N and P loads in irrigation return flows and receiving surface waters
    corecore