335 research outputs found
Breakdown of Hydrodynamics in the Radial Breathing Mode of a Strongly-Interacting Fermi Gas
We measure the magnetic field dependence of the frequency and damping time
for the radial breathing mode of an optically trapped, Fermi gas of Li
atoms near a Feshbach resonance. The measurements address the apparent
discrepancy between the results of Kinast et al., [Phys. Rev. Lett. {\bf 92},
150402 (2004)] and those of Bartenstein et al., [Phys. Rev. Lett. {\bf 92},
203201 (2004)]. Over the range of magnetic field from 770 G to 910 G, the
measurements confirm the results of Kinast et al. Close to resonance, the
measured frequencies are in excellent agreement with predictions for a unitary
hydrodynamic gas. At a field of 925 G, the measured frequency begins to
decrease below predictions. For fields near 1080 G, we observe a breakdown of
hydrodynamic behavior, which is manifested by a sharp increase in frequency and
damping rate. The observed breakdown is in qualitative agreement with the sharp
transition observed by Bartenstein et al., at 910 G.Comment: 4 pages, 2 figures, 1 table. Revised in response to referees'
Comments. Published in PRA(R
Evidence for Superfluidity in a Resonantly Interacting Fermi Gas
We observe collective oscillations of a trapped, degenerate Fermi gas of
Li atoms at a magnetic field just above a Feshbach resonance, where the
two-body physics does not support a bound state. The gas exhibits a radial
breathing mode at a frequency of 2837(05) Hz, in excellent agreement with the
frequency of Hz predicted for a
{\em hydrodynamic} Fermi gas with unitarity limited interactions. The measured
damping times and frequencies are inconsistent with predictions for both the
collisionless mean field regime and for collisional hydrodynamics. These
observations provide the first evidence for superfluid hydrodynamics in a
resonantly interacting Fermi gas.Comment: 5 pages, ReVTeX4, 2 eps figs. Resubmitted to PRL in response to
referees' comments. Title and abstract changed. Corrected error in Table 1,
atom numbers for 0.33 TF and 0.5 TF data were interchanged. Corrected typo in
ref 3. Added new figure of damping time versus temperatur
Scaling Flows and Dissipation in the Dilute Fermi Gas at Unitarity
We describe recent attempts to extract the shear viscosity of the dilute
Fermi gas at unitarity from experiments involving scaling flows. A scaling flow
is a solution of the hydrodynamic equations that preserves the shape of the
density distribution. The scaling flows that have been explored in the
laboratory are the transverse expansion from a deformed trap ("elliptic flow"),
the expansion from a rotating trap, and collective oscillations. We discuss
advantages and disadvantages of the different experiments, and point to
improvements of the theoretical analysis that are needed in order to achieve
definitive results. A conservative bound based on the current data is that the
minimum of the shear viscosity to entropy density ration is that eta/s is less
or equal to 0.5 hbar/k_B.Comment: 32 pages, prepared for "BCS-BEC crossoverand the Unitary Fermi Gas",
Lecture Notes in Physics, W. Zwerger (editor), Fig. 5 corrected, note added;
final version, corrected typo in equ. 9
Robust Ramsey sequences with Raman adiabatic rapid passage
We present a method for robust timekeeping in which alkali-metal atoms are interrogated in a Ramsey sequence based on stimulated Raman transitions with optical photons. To suppress systematic effects introduced by differential ac Stark shifts and optical intensity gradients, we employ atom optics derived from Raman adiabatic rapid passage (ARP). Raman ARP drives coherent transfer between the alkali-metal hyperfine ground states via a sweep of the Raman detuning through the two-photon resonance. Our experimental implementation of Raman ARP reduced the phase sensitivity of Ramsey sequences to Stark shifts in [superscript 133]Cs atoms by about two orders of magnitude, relative to fixed-frequency Raman transitions. This technique also preserved Ramsey fringe contrast for cloud displacements reaching the 1/e[superscript 2] intensity radius of the laser beam. In a magnetically unshielded apparatus, second-order Zeeman shifts limited the fractional frequency uncertainty to ~3.5 × 10[superscript −12] after about 2500 s of averaging.Charles Stark Draper Laboratory (Fellowship Program)Charles Stark Draper Laborator
Large-Area Atom Interferometry with Frequency-Swept Raman Adiabatic Passage
We demonstrate light-pulse atom interferometry with large-momentum-transfer atom optics based on stimulated Raman transitions and frequency-swept adiabatic rapid passage. Our atom optics have produced momentum splittings of up to 30 photon recoil momenta in an acceleration-sensitive interferometer for laser cooled atoms. We experimentally verify the enhancement of phase shift per unit acceleration and characterize interferometer contrast loss. By forgoing evaporative cooling and velocity selection, this method lowers the atom shot-noise-limited measurement uncertainty and enables large-area atom interferometry at higher data rates.Charles Stark Draper Laboratory (Fellowship
General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas
We show that the Lagrangian for interacting nonrelativistic particles can be
coupled to an external gauge field and metric tensor in a way that exhibits a
nonrelativistic version of general coordinate invariance. We explore the
consequences of this invariance on the example of the degenerate Fermi gas at
infinite scattering length, where conformal invariance also plays an important
role. We find the most general effective Lagrangian consistent with both
general coordinate and conformal invariance to leading and next-to-leading
orders in the momentum expansion. At the leading order the Lagrangian contains
one phenomenological constant and reproduces the results of the Thomas-Fermi
theory and superfluid hydrodynamics. At the next-to-leading order there are two
additional constants. We express various physical quantities through these
constants.Comment: 33 pages, 2 figures; v2: small typos fixed, references adde
Calorimetry of Bose-Einstein condensates
We outline a practical scheme for measuring the thermodynamic properties of a
Bose-Einstein condensate as a function of internal energy. We propose using
Bragg scattering and controlled trap manipulations to impart a precise amount
of energy to a near zero temperature condensate. After thermalisation the
temperature can be measured using standard techniques to determine the state
equation . Our analysis accounts for interaction effects and the
excitation of constants of motion which restrict the energy available for
thermalisation.Comment: 6 pages, 1 figure. Updated to published versio
Suppression of magnetic ordering in quasi-one-dimensional FexCo1-xNb2O6 compounds
International audienceWe present a systematic investigation of the series of compounds FexCo1-xNb2O6 by means of x-ray and neutron powder diffraction combined with magnetic measurements, carried out in the paramagnetic as well as in the ordered state, to probe the stability of the magnetic ordering against the composition changes in this model Ising system. Fe for Co substitution induces a continuous lattice volume increase, preserving the orthorhombic crystal structure. The unit-cell expansion is anisotropic and occurs mainly in the ab plane. The observed magnetic structures for x=0,0.8, and 1 are described by the propagation vectors (0,1/2,0) and (1/2,1/2,0), and are consistent with the picture of ferromagnetic Ising-type chains of Fe/Co spins antiferromagnetically coupled by weak interchain interactions. We find out that for
Hydrodynamic Modes in a Trapped Strongly Interacting Fermi Gases of Atoms
The zero-temperature properties of a dilute two-component Fermi gas in the
BCS-BEC crossover are investigated. On the basis of a generalization of the
variational Schwinger method, we construct approximate semi-analytical formulae
for collective frequencies of the radial and the axial breathing modes of the
Fermi gas under harmonic confinement in the framework of the hydrodynamic
theory. It is shown that the method gives nearly exact solutions.Comment: 11 page
Spin-Imbalance in a One-Dimensional Fermi Gas
Superconductivity and magnetism generally do not coexist. Changing the
relative number of up and down spin electrons disrupts the basic mechanism of
superconductivity, where atoms of opposite momentum and spin form Cooper pairs.
Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov proposed an
exotic pairing mechanism (FFLO) where magnetism is accommodated by formation of
pairs with finite momentum. Despite intense theoretical and experimental
efforts, however, polarized superconductivity remains largely elusive. Here we
report experimental measurements of density profiles of a two spin mixture of
ultracold 6Li atoms trapped in an array of one dimensional (1D) tubes, a system
analogous to electrons in 1D wires. At finite spin imbalance, the system phase
separates with an inverted phase profile in comparison to the three-dimensional
case. In 1D we find a partially polarized core surrounded by wings composed of
either a completely paired BCS superfluid or a fully polarized Fermi gas,
depending on the degree of polarization. Our observations are in quantitative
agreement with theoretical calculations in which the partially polarized phase
is found to be a 1D analogue of the FFLO state. This study demonstrates how
ultracold atomic gases in 1D may be used to create non-trivial new phases of
matter, and also paves the way for direct observation and further study of the
FFLO phase.Comment: 30 pages, 7 figure
- …
