335 research outputs found

    Breakdown of Hydrodynamics in the Radial Breathing Mode of a Strongly-Interacting Fermi Gas

    Full text link
    We measure the magnetic field dependence of the frequency and damping time for the radial breathing mode of an optically trapped, Fermi gas of 6^6Li atoms near a Feshbach resonance. The measurements address the apparent discrepancy between the results of Kinast et al., [Phys. Rev. Lett. {\bf 92}, 150402 (2004)] and those of Bartenstein et al., [Phys. Rev. Lett. {\bf 92}, 203201 (2004)]. Over the range of magnetic field from 770 G to 910 G, the measurements confirm the results of Kinast et al. Close to resonance, the measured frequencies are in excellent agreement with predictions for a unitary hydrodynamic gas. At a field of 925 G, the measured frequency begins to decrease below predictions. For fields near 1080 G, we observe a breakdown of hydrodynamic behavior, which is manifested by a sharp increase in frequency and damping rate. The observed breakdown is in qualitative agreement with the sharp transition observed by Bartenstein et al., at 910 G.Comment: 4 pages, 2 figures, 1 table. Revised in response to referees' Comments. Published in PRA(R

    Evidence for Superfluidity in a Resonantly Interacting Fermi Gas

    Full text link
    We observe collective oscillations of a trapped, degenerate Fermi gas of 6^6Li atoms at a magnetic field just above a Feshbach resonance, where the two-body physics does not support a bound state. The gas exhibits a radial breathing mode at a frequency of 2837(05) Hz, in excellent agreement with the frequency of νH10νxνy/3=2830(20)\nu_H\equiv\sqrt{10\nu_x\nu_y/3}=2830(20) Hz predicted for a {\em hydrodynamic} Fermi gas with unitarity limited interactions. The measured damping times and frequencies are inconsistent with predictions for both the collisionless mean field regime and for collisional hydrodynamics. These observations provide the first evidence for superfluid hydrodynamics in a resonantly interacting Fermi gas.Comment: 5 pages, ReVTeX4, 2 eps figs. Resubmitted to PRL in response to referees' comments. Title and abstract changed. Corrected error in Table 1, atom numbers for 0.33 TF and 0.5 TF data were interchanged. Corrected typo in ref 3. Added new figure of damping time versus temperatur

    Scaling Flows and Dissipation in the Dilute Fermi Gas at Unitarity

    Full text link
    We describe recent attempts to extract the shear viscosity of the dilute Fermi gas at unitarity from experiments involving scaling flows. A scaling flow is a solution of the hydrodynamic equations that preserves the shape of the density distribution. The scaling flows that have been explored in the laboratory are the transverse expansion from a deformed trap ("elliptic flow"), the expansion from a rotating trap, and collective oscillations. We discuss advantages and disadvantages of the different experiments, and point to improvements of the theoretical analysis that are needed in order to achieve definitive results. A conservative bound based on the current data is that the minimum of the shear viscosity to entropy density ration is that eta/s is less or equal to 0.5 hbar/k_B.Comment: 32 pages, prepared for "BCS-BEC crossoverand the Unitary Fermi Gas", Lecture Notes in Physics, W. Zwerger (editor), Fig. 5 corrected, note added; final version, corrected typo in equ. 9

    Robust Ramsey sequences with Raman adiabatic rapid passage

    Get PDF
    We present a method for robust timekeeping in which alkali-metal atoms are interrogated in a Ramsey sequence based on stimulated Raman transitions with optical photons. To suppress systematic effects introduced by differential ac Stark shifts and optical intensity gradients, we employ atom optics derived from Raman adiabatic rapid passage (ARP). Raman ARP drives coherent transfer between the alkali-metal hyperfine ground states via a sweep of the Raman detuning through the two-photon resonance. Our experimental implementation of Raman ARP reduced the phase sensitivity of Ramsey sequences to Stark shifts in [superscript 133]Cs atoms by about two orders of magnitude, relative to fixed-frequency Raman transitions. This technique also preserved Ramsey fringe contrast for cloud displacements reaching the 1/e[superscript 2] intensity radius of the laser beam. In a magnetically unshielded apparatus, second-order Zeeman shifts limited the fractional frequency uncertainty to ~3.5 × 10[superscript −12] after about 2500 s of averaging.Charles Stark Draper Laboratory (Fellowship Program)Charles Stark Draper Laborator

    Large-Area Atom Interferometry with Frequency-Swept Raman Adiabatic Passage

    Get PDF
    We demonstrate light-pulse atom interferometry with large-momentum-transfer atom optics based on stimulated Raman transitions and frequency-swept adiabatic rapid passage. Our atom optics have produced momentum splittings of up to 30 photon recoil momenta in an acceleration-sensitive interferometer for laser cooled atoms. We experimentally verify the enhancement of phase shift per unit acceleration and characterize interferometer contrast loss. By forgoing evaporative cooling and velocity selection, this method lowers the atom shot-noise-limited measurement uncertainty and enables large-area atom interferometry at higher data rates.Charles Stark Draper Laboratory (Fellowship

    General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas

    Full text link
    We show that the Lagrangian for interacting nonrelativistic particles can be coupled to an external gauge field and metric tensor in a way that exhibits a nonrelativistic version of general coordinate invariance. We explore the consequences of this invariance on the example of the degenerate Fermi gas at infinite scattering length, where conformal invariance also plays an important role. We find the most general effective Lagrangian consistent with both general coordinate and conformal invariance to leading and next-to-leading orders in the momentum expansion. At the leading order the Lagrangian contains one phenomenological constant and reproduces the results of the Thomas-Fermi theory and superfluid hydrodynamics. At the next-to-leading order there are two additional constants. We express various physical quantities through these constants.Comment: 33 pages, 2 figures; v2: small typos fixed, references adde

    Calorimetry of Bose-Einstein condensates

    Full text link
    We outline a practical scheme for measuring the thermodynamic properties of a Bose-Einstein condensate as a function of internal energy. We propose using Bragg scattering and controlled trap manipulations to impart a precise amount of energy to a near zero temperature condensate. After thermalisation the temperature can be measured using standard techniques to determine the state equation T(U,N,ω)T(U,N,\omega). Our analysis accounts for interaction effects and the excitation of constants of motion which restrict the energy available for thermalisation.Comment: 6 pages, 1 figure. Updated to published versio

    Suppression of magnetic ordering in quasi-one-dimensional FexCo1-xNb2O6 compounds

    Get PDF
    International audienceWe present a systematic investigation of the series of compounds FexCo1-xNb2O6 by means of x-ray and neutron powder diffraction combined with magnetic measurements, carried out in the paramagnetic as well as in the ordered state, to probe the stability of the magnetic ordering against the composition changes in this model Ising system. Fe for Co substitution induces a continuous lattice volume increase, preserving the orthorhombic crystal structure. The unit-cell expansion is anisotropic and occurs mainly in the ab plane. The observed magnetic structures for x=0,0.8, and 1 are described by the propagation vectors (0,1/2,0) and (1/2,1/2,0), and are consistent with the picture of ferromagnetic Ising-type chains of Fe/Co spins antiferromagnetically coupled by weak interchain interactions. We find out that for

    Hydrodynamic Modes in a Trapped Strongly Interacting Fermi Gases of Atoms

    Full text link
    The zero-temperature properties of a dilute two-component Fermi gas in the BCS-BEC crossover are investigated. On the basis of a generalization of the variational Schwinger method, we construct approximate semi-analytical formulae for collective frequencies of the radial and the axial breathing modes of the Fermi gas under harmonic confinement in the framework of the hydrodynamic theory. It is shown that the method gives nearly exact solutions.Comment: 11 page

    Spin-Imbalance in a One-Dimensional Fermi Gas

    Full text link
    Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov proposed an exotic pairing mechanism (FFLO) where magnetism is accommodated by formation of pairs with finite momentum. Despite intense theoretical and experimental efforts, however, polarized superconductivity remains largely elusive. Here we report experimental measurements of density profiles of a two spin mixture of ultracold 6Li atoms trapped in an array of one dimensional (1D) tubes, a system analogous to electrons in 1D wires. At finite spin imbalance, the system phase separates with an inverted phase profile in comparison to the three-dimensional case. In 1D we find a partially polarized core surrounded by wings composed of either a completely paired BCS superfluid or a fully polarized Fermi gas, depending on the degree of polarization. Our observations are in quantitative agreement with theoretical calculations in which the partially polarized phase is found to be a 1D analogue of the FFLO state. This study demonstrates how ultracold atomic gases in 1D may be used to create non-trivial new phases of matter, and also paves the way for direct observation and further study of the FFLO phase.Comment: 30 pages, 7 figure
    corecore