492 research outputs found

    The Fewest Clues Problem of Picross 3D

    Get PDF
    Picross 3D is a popular single-player puzzle video game for the Nintendo DS. It is a 3D variant of Nonogram, which is a popular pencil-and-paper puzzle. While Nonogram provides a rectangular grid of squares that must be filled in to create a picture, Picross 3D presents a rectangular parallelepiped (i.e., rectangular box) made of unit cubes, some of which must be removed to construct an image in three dimensions. Each row or column has at most one integer on it, and the integer indicates how many cubes in the corresponding 1D slice remain when the image is complete. It is shown by Kusano et al. that Picross 3D is NP-complete. We in this paper show that the fewest clues problem of Picross 3D is Sigma_2^P-complete and that the counting version and the another solution problem of Picross 3D are #P-complete and NP-complete, respectively

    Low-grade metamorphism around the down-dip limit of seismogenic subduction zones: Example from an ancient accretionary complex in the Shimanto Belt, Japan

    Get PDF
    International audienceReactions involving clay minerals during low-grade metamorphism at the depth of an ancient accretionary complex in the Shimanto Belt, Kyushu, Japan, were studied by integrated transmission electron microscopy-energy dispersive X-ray spectroscopy and X-ray diffraction analyses of the bulk rock and clay fraction. The analyzed metasediment (the Kitagawa unit) contain an incipient sub-horizontal slaty cleavage. Illite crystallinity data and mica b dimensions indicate that the conditions of metamorphic deformation were anchizone-epizone grade and intermediate pressure. Cleavage formation was linked to two reactions involving clay minerals: (1) the recrystallization of 1M-dominant matrix mica, inherited from the original sedimentary fabric, into thick, defect-free 2M1 packets along cleavage planes; and (2) the formation of chlorite from 7 Å berthierine. Balanced equations among the clay phases, based on compositional data and their relative abundance, suggest that the decomposition of matrix mica resulted in the formation of paragenetic mica and chlorite along the cleavage planes, without significant elemental outflux. Although a modal increase in phyllosilicates is not indicated by the data, the growth of chlorite and mica along cleavage planes may have a large influence on the rheological properties of a décollement and may be related to the occurrence of the seismic-aseismic transition at ~ 350 °C

    Two Distinct Pathways to Development of Squamous Cell Carcinoma of the Vulva

    Get PDF
    Squamous cell carcinoma (SCC) accounts for approximately 95% of the malignant tumors of the vaginal vulva and is mostly found in elderly women. The future numbers of patients with vulvar SCC is expected to rise, mainly because of the proportional increase in the average age of the general population. Two different pathways for vulvar SCC have been put forth. The first pathway is triggered by infection with a high-risk-type Human Papillomavirus (HPV). Integration of the HPV DNA into the host genome leads to the development of a typical vulvar intraepithelial neoplasia (VIN), accompanied with overexpression of p14ARF and p16INK4A. This lesion subsequently forms a warty- or basaloid-type SCC. The HPV vaccine is a promising new tool for prevention of this HPV related SCC of the vulva. The second pathway is HPV-independent. Keratinizing SCC develops within a background of lichen sclerosus (LS) through a differentiated VIN. It has a different set of genetic alterations than those in the first pathway, including p53 mutations, allelic imbalances (AI), and microsatellite instability (MSI). Further clinical and basic research is still required to understand and prevent vulvar SCC. Capsule. Two pathway for pathogenesis of squamous cell carcinoma of the value are reviewed

    High-field phase diagram of a chiral-lattice antiferromagnet Sr(TiO)Cu4(PO4)4

    Full text link
    High-field phase diagram of a chiral-lattice antiferromagnet Sr(TiO)Cu4(PO4)4 is studied by means of the ultrasound, dielectric, and magnetocaloric-effect measurements. These experimental techniques reveal two new phase transitions at high fields, which have not been resolved by the previous magnetization experiments. Specifically, the c66 acoustic mode shows drastic changes with hysteresis with applied fields along the c axis, indicating a strong magneto-elastic coupling. Combined with the cluster mean-field theory, we discuss the origins of these phase transitions. By considering the chiral-twist effect of Cu4O12 cupola units, which is inherent to the chiral crystal structure, the phase diagram is reasonably reproduced. The agreement between the experiment and theory suggests that this material is a unique quasi two-dimensional spin system with competing exchange interactions and chirality, leading to the rich phase diagram.Comment: 12 pages, 11 figures, 1 tabl

    New 60-cm Radio Survey Telescope with the Sideband-Separating SIS Receiver for the 200 GHz Band

    Full text link
    We have upgraded the 60-cm radio survey telescope located in Nobeyama, Japan. We developed a new waveguide-type sideband-separating SIS mixer for the telescope, which enables the simultaneous detection of distinct molecular emission lines both in the upper and lower sidebands. Over the RF frequency range of 205-240 GHz, the single-sideband receiver noise temperatures of the new mixer are 40-100 K for the 4.0-8.0 GHz IF frequency band. The image rejection ratios are greater than 10 dB over the same range. For the dual IF signals obtained by the receiver, we have developed two sets of acousto-optical spectrometers and a telescope control system. Using the new telescope system, we successfully detected the 12CO (J=2-1) and 13CO (J=2-1) emission lines simultaneously toward Orion KL in 2005 March. Using the waveguide-type sideband-separating SIS mixer for the 200 GHz band, we have initiated the first simultaneous 12CO (J=2-1) and 13CO (J=2-1) survey of the galactic plane as well as large-scale mapping observations of nearby molecular clouds.Comment: 15 pages, 15 figures, Accepted for publication in PASJ, version with high resolution figures is available via http://www.nro.nao.ac.jp/~nakajima/vst1_2sb.pd

    Slr0967 and Sll0939 induced by the SphR response regulator in Synechocystis sp. PCC 6803 are essential for growth under acid stress conditions

    Get PDF
    AbstractTwo-component signal transduction is the primary signaling mechanism for global regulation of the cellular response to environmental changes. We used DNA microarray analysis to identify genes that were upregulated by acid stress in the cyanobacterium Synechocystis sp. PCC 6803. Several of these genes may be response regulators that are directly involved in this type of stress response. We constructed deletion mutants for the response regulator genes and compared the growth rates of cells transfected with mutant and wild-type genes in a low pH medium. Of these mutants, deletion of sphR affected the growth rate under acid stress (pH 6.0) conditions. We examined genome-wide expression in ΔsphR mutant cells using DNA microarray to determine whether SphR was involved in the regulation of other acid stress responsive genes. Microarray and real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses of wild-type cells showed that the expression of phoA, pstS1, and pstS2, which are upregulated under phosphate-limiting conditions, increased (2.48-, 1.88-, and 5.07-fold, respectively) after acid stress treatment for 0.5h. In contrast, pstS2 expression did not increase in the ΔsphR mutant cells after acid stress, whereas the phoA and sphX mRNA levels increased. Furthermore, qRT-PCR and northern blot analysis indicated that downregulation of the acid-responsive genes slr0967 and sll0939 occurred with the deletion of sphR. Indeed, mutants of these genes were more sensitive to acid stress than the wild-type cells. Thus, induction of Slr0967 and Sll0939 by SphR may be essential for growth under acid stress conditions. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial
    corecore